
 Prof. Dr. Liggesmeyer, 1
QMSS – Software Measurement

Quality Management of Software and
Systems

Software Measurement

 Prof. Dr. Liggesmeyer, 2
QMSS – Software Measurement

Contents

Motivation

Software Quality Experiments

Software Measures

Measuring Scales

Cyclomatic Complexity

Current Impact of Software Measurements

Software Quality Measurement

 Prof. Dr. Liggesmeyer, 3
QMSS – Software Measurement

Motivation
Measurement

„When you can measure what you are speaking about, and express it
in numbers, you know something about it; but when you cannot
measure it, when you cannot express it in numbers, your knowledge is
of a meager and unsatisfactory kind.“
(Lord Kelvin, Popular Lectures and Addresses, 1889)

„Was man messen kann, das existiert auch!“
(Max Planck, 1858 - 1947)

 Prof. Dr. Liggesmeyer, 4
QMSS – Software Measurement

Motivation
Measurements in Software Development

Substitutes quantitative and reproducible statements for qualitative and
usually intuitive statements about software

Example

Qualitative, intuitive

- The developer states: ‘I have fully tested my software module.’

Quantitative, reproducible

- ‘My test tools states a branch coverage of 57% (70 of 123
branches) at the moment. In our company modules are considered
sufficiently tested with a branch coverage of 95%. Thus, I have to
test at least 47 additional branches with an estimated additional effort
of 1.5 days based on experiences with similar modules.’

 Prof. Dr. Liggesmeyer, 5
QMSS – Software Measurement

Motivation
Measuring Quality in Software Development

Today, software is used in application domains, where quantitative
statements are common or necessary

Contracts: ‘We stipulate a minimum availability of 99.8%!’

Safety proof of a rail system for the Eisenbahnbundesamt: ‘What is the
residual risk of software failures?’

Is the estimated number of residual faults sufficiently small to release the
products?

Is the possibility of software faults in controllers causing a failure in our
upper class limousine sufficiently small?

We need a failure free mission time of four weeks. Is this possible?

 Prof. Dr. Liggesmeyer, 6
QMSS – Software Measurement

Motivation
Measuring Quality in Software Development: Problems

Most quality characteristics not directly measurable!
Number of faults

Availability

Reliability

Safety

...

Quality characteristics may be
Determined experimental (e.g., reliability)

Calculated from directly measurable characteristics (e.g., number of
faults)

 Prof. Dr. Liggesmeyer, 7
QMSS – Software Measurement

Software Quality Experiments
Stochastic Analysis of Software Reliability: Situation

Independent research area since approximately 30 years

Sparse influence to software development in practice

Mathematical foundation partly too complex

A lot of different stochastic reliability models

A priori selection of a model not possible

Determination of model parameters necessary

Theory application to practice needs powerful tool support

 Prof. Dr. Liggesmeyer, 8
QMSS – Software Measurement

Software Quality Experiments
Stochastic Analysis of Software Reliability: Theory

Musa and Goel-Okumoto model, respectively
Generalized Goel-Okumoto model
Musa-Okumoto model
Generalized Musa-Okumoto model
Duane and Crow model, respectively
Log model
Log power model
Generalized log power model
Yamada S-shape model
Generalized Yamada S-shape model
Geometric Moranda and deterministic proportional model, resp.
Littlewood model
Inverse linear model

)1()(bteatm −−=
)1()(

cbteatm −−=
)1ln()(+= btatm
)1ln()(+= cbtatm

battm =)(
)ln()(btatm =

)1(ln)(+= tatm b

)1(ln)(+= ctatm b

))1(1()(btebtatm −+−=
))1(1()(btectatm −+−=

)1ln()(++= tbatm
batctm −+=)()(

)11()(−+= btatm

))(()(tNEtm =

 Prof. Dr. Liggesmeyer, 9
QMSS – Software Measurement

Software Quality Experiments
Stochastic Analysis of Software Reliability: Practical Method of Resolution

 Prof. Dr. Liggesmeyer, 10
QMSS – Software Measurement

Software Quality Experiments
Stochastic Analysis of Software Reliability: Practical Method of Resolution

Numerous application domains (traffic engineering, medical
engineering, telecommunication, ...)

 Prof. Dr. Liggesmeyer, 11
QMSS – Software Measurement

Software Measures
Applying Measures

Process measures Product measures

Project measures

LOC

Cyclomatic
Number

Function
Points

Average
Productivity

Test
Coverage

On schedule
at phase
transitions

Average fault
detection of
inspections

Current accumulated costs
Estimated costs

 Prof. Dr. Liggesmeyer, 12
QMSS – Software Measurement

Software Measures
Requirements of Measures

Simplicity
Is the result so simple that it could be easily interpreted?

Adequacy
Covers the measure the desired characteristic?

Robustness
Is the value of the measure stable against manipulations of minor
importance?

Timeliness

Can the measure be collected in sufficient time to allow a reaction to the
process?

Analyzability
Is the measure statistically analyzable (e.g., numeric domain) (For this
requirement the type of the measure scale is crucial)

 Prof. Dr. Liggesmeyer, 13
QMSS – Software Measurement

Software Measures
Requirements of Measures: Reproducibility

Normally, a measure is
reproducible, independent
of the generation
mechanism, if it is defined
in a precise way

Measured
value

Product / Process

!

Manual generation
of measures

Tool-supported
generation of
measures

Measured
value

 Prof. Dr. Liggesmeyer, 14
QMSS – Software Measurement

Software Measures
Requirements of Measures: Reproducibility

Examples
McCabe's cyclomatic number: e-n+2

e = Number of edges in a CFG; n = Number of nodes in a CFG; CFG =
Control flow graph

- Completely reproducible

Lines of Code (LOC)

Count empty lines? Count lines with comment?

- Completely reproducible, if adequately defined

Function Points: manual evaluation of complexities needed

- Not completely reproducible in principle

Understandability

- Poor reproducibility

 Prof. Dr. Liggesmeyer, 15
QMSS – Software Measurement

Software Measures
Evaluation of Measures

A recommendation of lower and upper bounds for measures is difficult

Which values are ‘normal’ must be determined by experience

A deviation from usual values may indicate a problem, not necessarily,
though

 Prof. Dr. Liggesmeyer, 16
QMSS – Software Measurement

Software Measures
Calibration of Measures and Models

The correlation between measures and relevant characteristics
demands a calibration, which has to be adapted to changing situations
if necessary

Empirical and theoretical models can be distinguished

Example
Theoretical effort model (cp. Halstead-Measures)
E = ... size2 ...

The square correlation between effort and size was identified by
theoretical considerations

Empirical effort model: E = ... size^1.347 ...

The exponent of 1.347 was determined by statistical data analysis

 Prof. Dr. Liggesmeyer, 17
QMSS – Software Measurement

Measuring Scales

While expressing abstract characteristics as numerical value, it is necessary
to figure out which operations can be reasonably performed on the
values
Example

Measuring length
- Board a has a length of one meter. Board b has a length of two meters. Thus,

board b is two times as long as board a.
- This statement makes sense

Measuring temperature
- Today, we have 20°C. Yesterday it was 10°C. Hence, today it is twice as hot

as yesterday

- That is wrong. The correct answer would be: Today is approximately 3.5 %
warmer than yesterday

Obviously, there is a difference between the temperature scale in °C and the length
in meters, which leads to operations not applicable to the temperature scale

 Prof. Dr. Liggesmeyer, 18
QMSS – Software Measurement

Measuring Scales

Nominal scale
Free labeling of specific characteristics

Inventory numbers of library books (DV 302, PH 002, CH 056, ...)

Names of different requirements engineering methods (SA; SADT, OOA; IM, ...)

Ordinal scale
Mapping of an ordered attribute’s aspect to an ordered set of measurement values,
such that the order is preserved

Mapping of patient arrivals to the waiting list in a medical practice

Interval scale
A scale, which is still valid if transformations like g(x) = ax + b, with a > 0 are
applied

Temperature scales in degree Celsius or Fahrenheit. If F is a temperature in the
Fahrenheit scale, the temperature in the Celsius scale can determined as follows: C
= 5/9 (F - 32). The relations between temperatures are preserved

 Prof. Dr. Liggesmeyer, 19
QMSS – Software Measurement

Measuring Scales

Rational scale
Scale, where numerical values can be related to each other (percental
statements make sense)

Length in meters (It is twice as far from a to b than from c to d)

Temperature in Kelvin

Absolute scale
Scale, providing the only possibility to measure circumstances

Counting

 Prof. Dr. Liggesmeyer, 20
QMSS – Software Measurement

Cyclomatic Complexity

Common measure of complexity

Often surrounded with an aura of an ‘important’ key measure

Originated from graph theory (strongly connected graphs) and thus
relating to control flow graphs and programs

Calculation: e – n + 2
(e = Number of edges, n = Number of nodes)

Easy to calculate as it depends strongly on the number of decisions
within the program

Suited as complexity measure, if the number of decisions predicate the
complexity of the program

Probably the most common measure in analysis and testing tools

 Prof. Dr. Liggesmeyer, 21
QMSS – Software Measurement

Cyclomatic Complexity

Cyclomatic number is a measure of the structural complexity of
programs

Calculation based on the control flow graph

Cyclomatic number v(G) of a graph is: v(G) = e - n + 2

(e – Number of edges, n – Number of nodes)

 Prof. Dr. Liggesmeyer, 22
QMSS – Software Measurement

Cyclomatic Complexity

Cyclomatic complexity of graphs

Sequence v(G) = 1-2+2 = 1

v(G) = 4-4+2 = 2

Pre-test loop
v(G) = 3-3+2 = 2

Post-test loop
v(G) = 3-3+2 = 2

Selection

 Prof. Dr. Liggesmeyer, 23
QMSS – Software Measurement

Current Impact of Software Measurements

Efficient software measurements are important for the following areas
Flat management structures

Standardizations with respect to software developments

Achieving a high Capability Maturity Level (Assessments)

 Prof. Dr. Liggesmeyer, 24
QMSS – Software Measurement

Current Impact of Software Measurements
Software Measurements and Flatter Management Structures

Trend for software management towards flat structures
One manager supervises significant more developer than before

Provision and summarization of information not through middle
management, but automated measurement systems

Management intervention only necessary if measurement values indicates
problematic situations

Efficient measurement is an important requirement

 Prof. Dr. Liggesmeyer, 25
QMSS – Software Measurement

Current Impact of Software Measurements
Software Measurements and Software Development Standards

Standards become more and more important for the software
development (e.g., ISO 9001)

Quality proof for potential customers

Marketing argument; differentiation from not certified competitors

Important with respect to product liability

In some domains requirement for the contract

All standards attach importance to systematic procedures, transparency,
and control of the development process

This can be proved by adequate measures

 Prof. Dr. Liggesmeyer, 26
QMSS – Software Measurement

Current Impact of Software Measurements
Software Measurements and the Capability Maturity Model

Capability Maturity Model assigns the maturity of a software
development process to one of five levels. The possible levels are: 1-
initial, 2-repeatable, 3-defined, 4-managed, 5-optimized

Reaching level 4 or 5 is only possible if a measurement system exists
and is used that provides the following tasks

Measurement of productivity and quality

Evaluation of project based on this measurements

Detection of deviations

Arrange corrective activities if deviations occur

Identification and control of project risks

Prognosis of project progress and productivity

 Prof. Dr. Liggesmeyer, 27
QMSS – Software Measurement

Software Quality Measurement
Chain of Reasoning

Mea-
sure-
ment
goal

Hypothesis Measure-
ment

Mea-
sured
values

Validation
of mea-
sures

7 (±2)

(8,4, ...)

Mea-
sures

(complex software
contains more
faults)

(Prognosis
of residual

faults)

Actual goal

(safety risk
from residual

faults?)

Number
of

faults?

Statement
(After

performing
adequate

actions the
residual risk is

acceptable)

actions Evaluation of measured values
(How many faults are contained?)

(McCabe,
DIT,
...)

wrong?

difficult!
difficult!

 Prof. Dr. Liggesmeyer, 28
QMSS – Software Measurement

Software Quality Measurement
Popular Hypotheses in Theory and Practice

////+Fault density of corresponding
phases are constant between
releases

/-+/+Size measures are adequate for
the fault prediciton

////--Many faults during the test means
many failures during usage

////+Many faults during the module test
means many faults during the
system test

////++Few modules generate the
majority of failures

/++(+)++++Few modules contain the majority
of faults

/Abreu, Melo
96/

/Basili,
Perricone 84/

/Cartwright,
Shepperd 00/

/Basili, et al.
96/

/Fenton,
Ohlsson 00/

++: strong conformation; +: light conformation; 0: no statement;
-: light refusal; -- strong refusal; /: not evaluated; ?: unclear

 Prof. Dr. Liggesmeyer, 29
QMSS – Software Measurement

Software Quality Measurement
Popular Hypotheses in Theory and Practice: Findings I

Faults are not uniformly distributed among software modules, but
concentrated in few modules

This modules generate the majority of all problems

Larger module size does not necessarily mean more faults

Many discovered problems during the tests does not mean that the
software shows a lack of quality during practice

There seem to be rules guaranteeing that subsequent developments
provide similar results

Question
How can the few modules that contain the majority of faults be
discovered?

 Prof. Dr. Liggesmeyer, 30
QMSS – Software Measurement

Software Quality Measurement
Popular Hypotheses in Theory and Practice

POF: +CBO: /CBO: ++

COF: ++LCOM: /LCOM: 0

AIF: (+)NOC: ?NOC: ?

MIF: +RFC: /RFC: ++

AHF: 0

Better than
size

measures:

-

DIT: ++DIT: ++

MHF: +WMC: /WMC: +Better than
size

measures:

-

Code complexity measures are
better means for fault prediction

/Abreu, Melo
96/

/Basili,
Perricone 84/

/Cartwright,
Shepperd 00/

/Basili, et al.
96/

/Fenton,
Ohlsson 00/

Object-oriented measures
WMC (Weighted Methods per Class)

DIT (Depth of Inheritance Tree)

NOC (Number Of Children)

CBO (Coupling Between Object-classes)

RFC (Response For a Class)

LCOM (Lack of Cohesion on Methods)

MHF: Method Hiding Factor

AHF: Attribute Hiding Factor

MIF: Method Inheritance Factor

AIF: Attribute Inheritance Factor

POF: Polymorphism Factor

COF: Coupling Factor

 Prof. Dr. Liggesmeyer, 31
QMSS – Software Measurement

Software Quality Measurement
Popular Hypotheses in Theory and Practice: Findings II

Several simple complexity measures (e.g., McCabes cyclomatic
number) are not better than size measures (e.g., LOC)

Specific complexity measures display a good quality of fault prediction

Conclusion
A suitable combination of adequate complexity measures enables a
directed identification of faulty modules

 Prof. Dr. Liggesmeyer, 32
QMSS – Software Measurement

Software Quality Measurement
Popular Hypotheses in Theory and Practice

//States:

++

//Model-based measures
are not suited for size
prediction

//Events:

++

//Model-based (Shlaer-
Mellor) measures are
suited for fault prediction

/Abreu, Melo
96/

/Basili,
Perricone 84/

/Cartwright,
Shepperd 00/

/Basili, et al.
96/

/Fenton,
Ohlsson 00/

 Prof. Dr. Liggesmeyer, 33
QMSS – Software Measurement

Software Quality Measurement
Popular Hypotheses in Theory and Practice: Findings III

It is possible to derive measures from software design to predict code
size and fault numbers at an early stage

 Prof. Dr. Liggesmeyer, 34
QMSS – Software Measurement

Software Quality Measurement
Conclusions

Statistic methods for deriving software reliability are theoretically
funded and applicable in practice

Several plausible hypotheses are empirically falsified, but there is
evidence that

Faults concentrates in few modules
This modules can be identified through measurements of

- Code complexity
- Complexity of design models

Prediction of faults based on single measures (so called univariate
analysis) is not possible. A suitable combination of measures (so
called multivariate analyses) can produce reliable propositions

It can be anticipated, that prediction models can be generated based
on finished projects, as the similarity between subsequent projects is
empirically supported

 Prof. Dr. Liggesmeyer, 35
QMSS – Software Measurement

Literature

Halstead M.H., Elements of Software Science, New York: North-
Holland 1977

Zuse H., Software Complexity - Measures and Methods, Berlin, New
York: De Gruyter 1991

