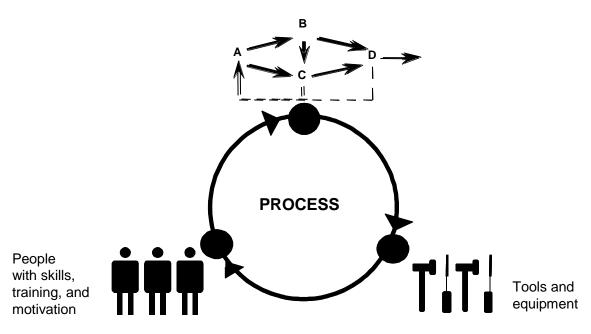


Software Entwicklung 2

Inhalt

- Das Wasserfall-Modell
- Das V-Modell
- Das Prototypen-Modell
- Das evolutionäre/inkrementelle Modell
- Das nebenläufige Modell
- Überblick über die Prozessmodelle

Lernziele



- Wasserfall-Modell und V-Modell kennen und erläutern können
- Prozessphasen kennen und ihre Funktion beschreiben können

Prozesse

Procedures and methods defining the relationship of tasks

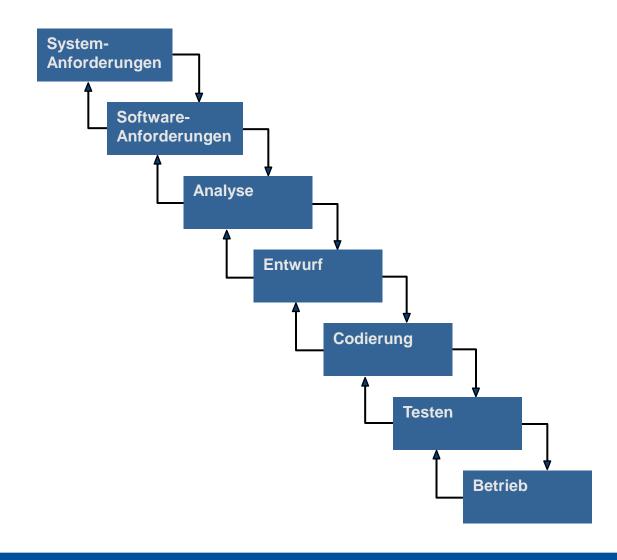
- Organisationen konzentrieren sich primär auf
 - Personen
 - Prozeduren und Methoden
 - Werkzeuge
- Es ist aber der Prozess der alles zusammenhält

- Ein Prozessmodell legt fest
 - Reihenfolge des Arbeitsablaufs
 - Entwicklungsstufen
 - Phasenkonzepte
 - · Jeweils durchzuführende Aktivitäten
 - Definition der Teilprodukte einschließlich Layout und Inhalt
 - Fertigstellungskriterien
 - Notwendige Mitarbeiterqualifikationen
 - Verantwortlichkeiten und Kompetenzen
 - Anzuwendende Standards, Richtlinien, Methoden und Werkzeuge

- Modell der Software-Technik: code & fix
 - 1 Schreibe ein Programm
 - 2 Finde und behebe die Fehler in dem Programm
 - Nachteile
 - Nach Behebung von Fehlern wurde das Programm so umstrukturiert, dass weitere Fehlerbehebungen immer teurer wurden
 - Dies führt zu der Erkenntnis, dass eine Entwurfsphase vor der Programmierung benötigt wird
 - Selbst gut entworfene Software wurde vom Endbenutzer oft nicht akzeptiert
 - Dies führte zu der Erkenntnis, dass eine Definitionsphase vor dem Entwurf benötigt wird
 - Fehler waren schwierig zu finden, da Tests schlecht vorbereitet und Änderungen unzureichend durchgeführt wurden
 - Dies führte zu einer separaten Testphase

- Das Wasserfall-Modell
- Das V-Modell
- Das Prototypen-Modell
- Das evolutionäre/inkrementelle Modell
- Das objektorientierte Modell
- Das nebenläufige Modell
- Das Spiralmodell

Das Wasserfall-Modell



- Software wird in sukzessiven Stufen entwickelt
- Rückkopplungsschleifen zwischen den Stufen
 - Rückkopplungen werden auf angrenzende Stufen begrenzt
- Name Wasserfall-Modell
 - Ergebnisse einer Phase fallen wie bei einem Wasserfall in die nächste Phase

software engineering dependability

Das Wasserfall-Modell

Das Wasserfall-Modell Charakteristika

- Jede Aktivität ist in der richtigen Reihenfolge und in der vollen Breite vollständig durchzuführen
- Am Ende jeder Aktivität steht ein fertiggestelltes Dokument
 - Dokumenten-getriebenes Modell
- Der Entwicklungsablauf ist sequentiell
 - · Jede Aktivität muss beendet sein, bevor die nächste anfängt
- Orientierung am top-down-Vorgehen
- Einfach, verständlich und benötigt nur wenig Managementaufwand
- Benutzerbeteiligung ist nur in der Definitionsphase vorgesehen

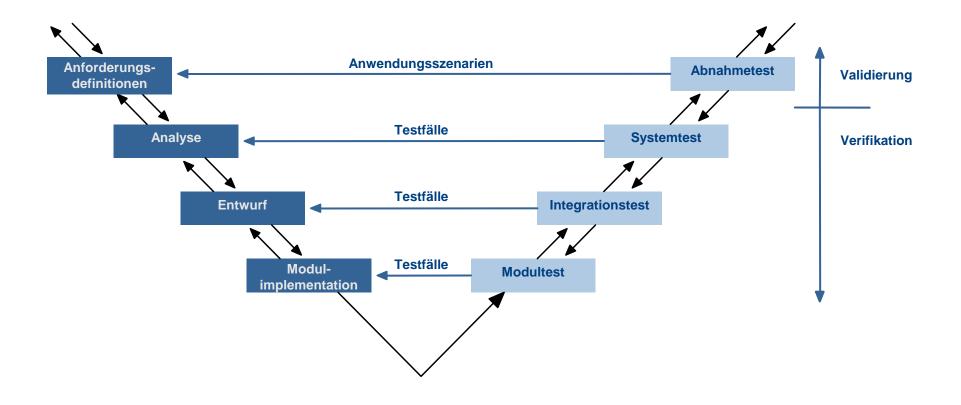
Das Wasserfall-Modell

- Beispiel: »Seminarorganisation«
 - 1 Unter Einbeziehung des Auftraggebers/Benutzers wird eine Produkt-definition für alle Anforderungen des Auftraggebers ermittelt
 - Nach Abnahme des Produktmodells durch den Auftraggeber ist die Definitionsphase abgeschlossen
 - 2 In der Entwurfsphase wird ausgehend vom Produktmodell eine Produkt-architektur für das gesamte Produkt entwickelt
 - Sind Anforderungen des Produktmodells nicht realisierbar, wird ein Änderungsdokument erstellt
 - Anschließend beginnt wieder die Entwurfsphase
 - Als Ergebnis der Entwurfsphase wird die Produktarchitektur an die Implementierungsphase übergeben
 - 3 Die Produktarchitektur wird implementiert
 - Es entsteht das fertige Produkt

Das Wasserfall-Modell

Nachteile

- · Es ist nicht immer sinnvoll
 - alle Entwicklungsschritte in der vollen Breite und vollständig durchzuführen
 - alle Entwicklungsschritte sequentiell durchzuführen
- Gefahr, dass die Dokumentation wichtiger wird als das eigentliche System
- Risikofaktoren werden unter Umständen zu wenig berücksichtigt, da der einmal festgelegte Entwicklungsablauf durchgeführt wird


Das V-Modell

- Erweiterung des Wasserfall-Modells
- Integriert die Qualitätssicherung in das Wasserfall-Modell
- Verifikation und Validation der Teilprodukte sind Bestandteile des V-Modells
 - Verifikation
 - Überprüfung der Übereinstimmung zwischen einem Software-Produkt und seiner Spezifikation
 - »Wird ein korrektes Produkt entwickelt?«
 - Validation
 - Eignung bzw. der Wert eines Produktes bezogen auf seinen Einsatzzweck
 - »Wird das richtige Produkt entwickelt?«
- Vorsicht: Der Begriff "Verifikation" wird auch mit einer anderen Bedeutung verwendet

Das V-Modell

Das V-Modell Weiterentwicklung

- Verbindlich für Bundeswehr und Behörden (V-Modell XT)
- Software wird immer als Bestandteil eines informationstechnischen Systems (IT-System) angesehen
- Sehr umfangreiches Modell, das für eine konkrete Entwicklung angepaßt werden muss (Tailoring)
- Extrem viele Schritte in mehreren Subsystemen
- Extrem viele Rollen (Manager, Entwickler, ...)

Das V-Modell Bewertung

- Integrierte, detaillierte Darstellung von
 - Systemerstellung
 - Qualitätssicherung
 - · Konfigurationsmanagement und
 - Projektmanagement
- Generisches Vorgehensmodell mit definierten Möglichkeiten zum Maßschneidern
- Ermöglicht eine standardisierte Abwicklung von Systemerstellungs-Projekten
- Gut geeignet für große Projekte, insbesondere für eingebettete Systeme

Das Prototypen-Modell Probleme traditioneller Prozessmodelle

- Auftraggeber ist oft nicht in der Lage, die Anforderungen an ein neues System explizit und/oder vollständig zu formulieren
 - Traditionelle Prozessmodelle verlangen jedoch zu Beginn der Entwicklung eine vollständige Spezifizierung der Anforderungen
- Während der Entwicklung ist oft eine wechselseitige Koordination zwischen Entwicklern und Anwendern erforderlich
 - Traditionelle Prozessmodelle beenden diese Kooperation, wenn die Anforderungen fertiggestellt sind
- Software-Entwicklungsabteilungen ziehen sich nach der Definitions-Phase vom Auftraggeber zurück
 - Präsentation des Ergebnisses erst nach der Fertigstellung
 - Diese Organisationsstruktur wird durch traditionelle Prozessmodelle unterstützt

Das Prototypen-Modell Probleme traditioneller Prozessmodelle

- Manchmal gibt es unterschiedliche Lösungsmöglichkeiten
 - Diese müssen experimentell erprobt und mit dem Auftraggeber diskutiert werden
- Die Realisierbarkeit lässt sich manchmal theoretisch nicht garantieren
 - · Beispiel: Echtzeitanforderungen
 - Diese speziellen Anforderungen müssen vor Abschluss der Definitions-phase realisiert werden
- In der Akquisitionsphase muss der Auftraggeber von der prinzipiellen Durchführbarkeit einer Idee oder der Handhabung überzeugt werden
- → Diese Probleme können durch das Prototypen-Modell (teilweise) gelöst werden

Das Prototypen-Modell Software-Prototyp vs. Prototyp

Unterschiede

- Ein Software-Prototyp ist nicht das erste Muster einer großen Serie von Produkten
 - · Beispiel: Massenproduktion in der Autoindustrie
- Ein Software-Prototyp zeigt ausgewählte Eigenschaften des Zielproduktes im praktischen Einsatz
 - Er ist nicht nur eine Simulation des Zielproduktes
 - Beispiele: Windkanal- oder Architekturmodell

Gemeinsamkeiten

- Anforderungen oder Entwicklungsprobleme klären
- Diskussionsbasis
- Entscheidungshilfe
- Verwendung f
 ür experimentelle Zwecke
- Sammeln von praktischen Erfahrungen

Das Prototypen-Modell

- Unterstützt systematisch die frühzeitige Erstellung ablauffähiger Modelle (Prototypen) des zukünftigen Produkts, um die Umsetzung von Anforderungen und Entwürfen in Software zu demonstrieren und mit ihnen zu experimentieren
- Vorgehensweise
 - prototyping
- 4 Arten von Prototypen
 - Demonstrationsprototyp
 - Prototyp im eigentlichen Sinne
 - Labormuster
 - Pilotsystem

Das Prototypen-Modell Demonstrationsprototyp

- Dient zur Auftragsakquisition
- Soll dem potentiellen Auftraggeber einen ersten Eindruck vermitteln, wie ein Produkt für das vorgesehene Anwendungsgebiet im Prinzip aussehen kann.
- In der Regel werden solche Prototypen schnell aufgebaut
 - · rapid prototyping
- Sie werden nach der Erfüllung ihrer Aufgaben »weggeworfen«

Das Prototypen-Modell Prototyp im eigentlichen Sinne

- Wird parallel zur Modellierung des Anwendungsbereichs erstellt
- Soll Aspekte der Benutzungsschnittstelle oder Teile der Funktionalität veranschaulichen
- Trägt dazu bei, den Anwendungsbereich zu analysieren
- Provisorisches, ablauffähiges Software-System

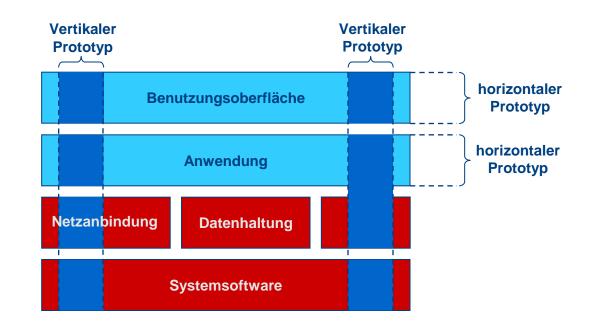
Das Prototypen-Modell Labormuster

- Soll konstruktionsbezogene Fragen und Alternativen beantworten
- Demonstriert die technische Umsetzbarkeit des Produktmodells
- Nicht für Endbenutzer bestimmt
- Sollte technisch mit dem späteren Produkt vergleichbar sein

Das Prototypen-Modell Pilotsystem

- Ist Kern eines Produkts
- Unterscheidung zwischen dem Prototyp und dem Produkt verschwindet
- Pilotsystem ist für die Benutzung in der Einsatzumgebung entworfen und nicht nur unter Laborbedingungen

Das Prototypen-Modell

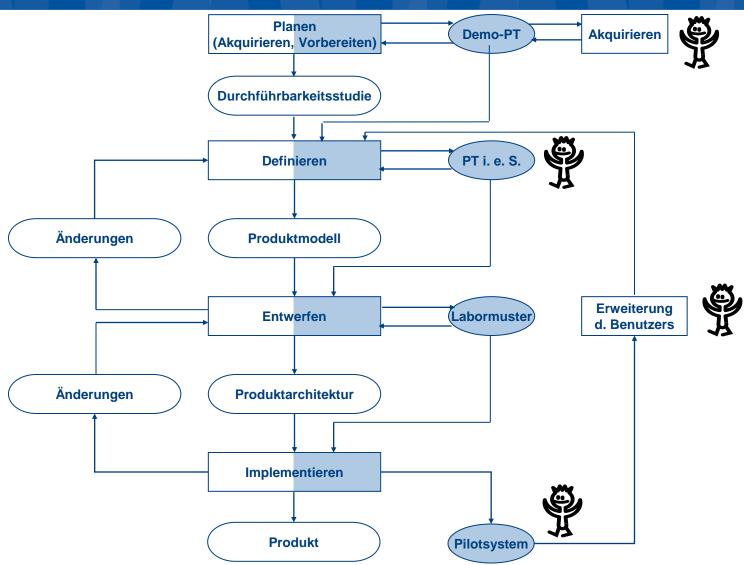


Horizontaler Prototyp

- Realisiert nur spezifische Ebenen des Systems
- Die betreffende Ebene wird möglichst vollständig realisiert.

Vertikaler Prototyp

- Implementiert ausgewählte Teile des Zielsystems vollständig durch alle Ebenen hindurch
- Dort geeignet, wo die Funktionalitäts- und Implementierungsoptionen noch offen sind.


Das Prototypen-Modell Prototyp vs. fertiges Software-System

- Prototypen dienen nur zur Klärung von Problemen
- Ein Prototyp ist Teil der Produktdefinition
- Prototypen werden inkrementell weiterentwickelt, um ein marktfähiges Produkt zu erhalten

Das Prototypen-Modell

0101Seda010100

27

Das Prototypen-Modell Bewertung

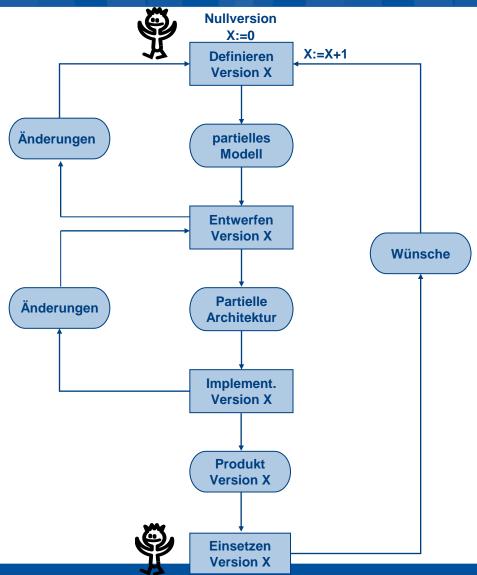
- Reduzierung des Entwicklungsrisikos durch frühzeitigen Einsatz von Prototypen
- Prototypen können sinnvoll in andere Prozessmodelle integriert werden
- Prototypen können heute durch geeignete Werkzeuge schnell erstellt werden
- Prototyping verbessert die Planung von Software-Entwicklungen
- Labormuster f\u00f6rdern die Kreativit\u00e4t f\u00fcr L\u00f6sungsalternativen
- Starke Rückkopplung mit dem Endbenutzer und dem Auftraggeber
- Höherer Entwicklungsaufwand, da Prototypen zusätzlich erstellt werden
- Gefahr, dass ein »Wegwerf«-Prototyp Teil des Endprodukts wird
- Verträge für die Software-Erstellung berücksichtigen noch nicht das Prototypen-Modell
- Prototypen werden oft als Ersatz f
 ür die fehlende Dokumentation angesehen
- Beschränkungen und Grenzen von Prototypen sind oft unbekannt

Das Prototypen-Modell Voraussetzungen

- Ausreichendes Wissen über das Anwendungsgebiet muss vorhanden sein
- Nur auf der Basis schriftlicher Dokumente kann kein Prototyp erstellt werden →
 Die Entwickler müssen Zugang zu den Benutzern haben
- Die Endbenutzer müssen am Prototypingprozess beteiligt werden
- Die Benutzerbeteiligung ersetzt nicht die kreativen Ideen der Entwickler
- Alle beteiligten Personengruppen müssen in direktem Kontakt stehen
- Prototypen müssen dokumentiert werden
- Die Vorgehensweise hängt von der untersuchten Fragestellung ab
- Geeignete Werkzeuge müssen verfügbar sein
- → Motto: »Redo until Right«

Das evolutionäre/inkrementelle Modell

Ausgangspunkt


- Kern- oder Mussanforderungen des Auftraggebers
- Nur dieser Produktkern wird entworfen und implementiert
- · Das Kernsystem wird an den Auftraggeber ausgeliefert
- Der Auftraggeber sammelt Erfahrungen
 - Daraus ermittelt er seine Produktanforderungen für eine erweiterte Version

Charakteristika

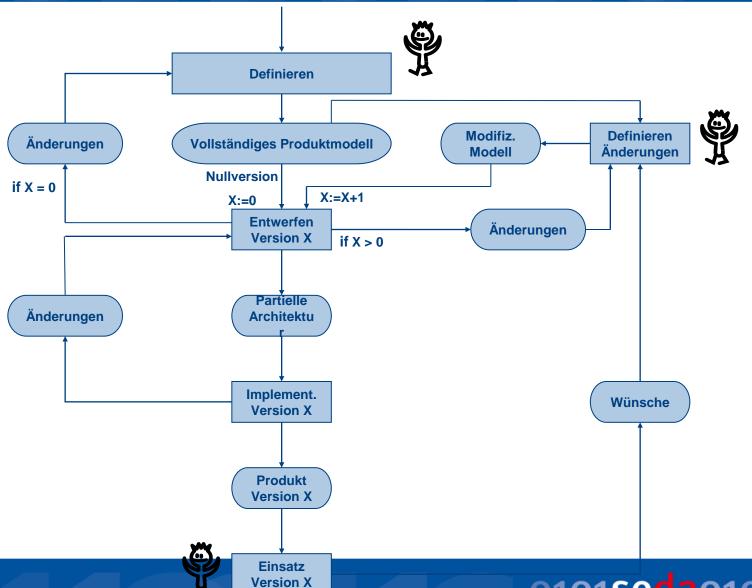
- Das Software-Produkt wird allmählich und stufenweise entwickelt
- Pflegeaktivitäten werden ebenfalls als Erstellung einer neuen Version betrachtet
- Gut geeignet, wenn der Auftraggeber seine Anforderungen noch nicht vollständig überblickt
 - »I can't tell you what I want, but I'll know it when I see it«
- Die Entwicklung ist code-getrieben
 - Konzentration auf jeweils lauffähige Teilprodukte

Das evolutionäre/inkrementelle Modell

31

Das evolutionäre/inkrementelle Modell Bewertung evolutionäres Modell

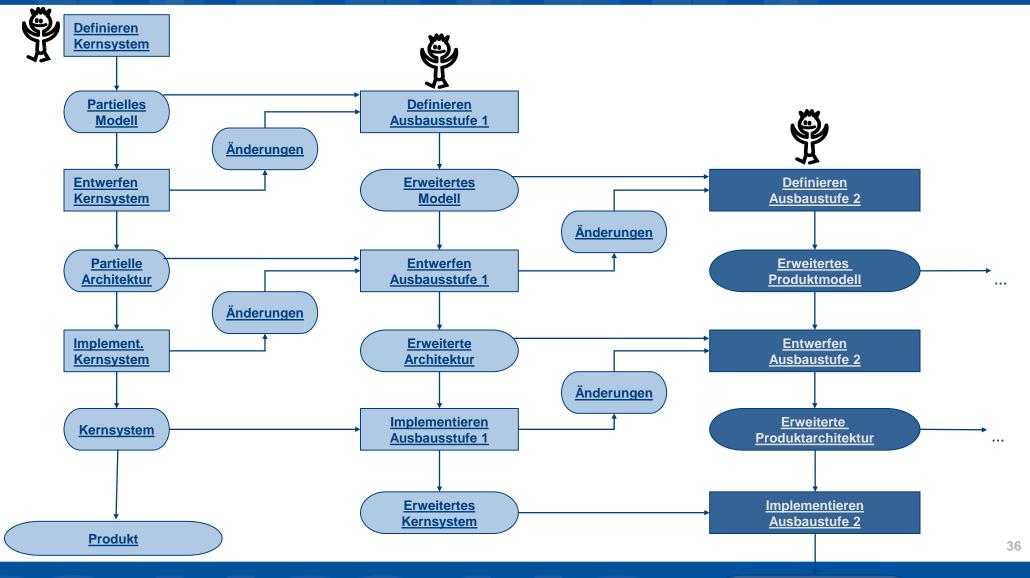
- Der Auftraggeber erhält in kürzeren Zeitabständen einsatzfähige Produkte
- Kombination mit dem Prototypen-Modell möglich
- Erfahrungen aus dem Produkteinsatz können in die nächste Version eingebracht werden
- Ein Produkt wird in einer Anzahl kleiner Arbeitsschritte überschau-barer Größe erstellt
- Gefahr, dass in nachfolgenden Versionen die komplette System-architektur überarbeitet werden muss
- Gefahr, dass die Nullversion nicht flexibel genug ist, um sich an ungeplante Evolutionspfade anzupassen


Das evolutionäre/inkrementelle Modell Inkrementelles Modell

- Vermeidet die Nachteile des evolutionären Modells
- Anforderungen an das zu entwickelnde Produkt werden möglichst vollständig erfasst und modelliert
- Nur ein Teil der Anforderungen wird entworfen und implementiert
- Anschließend wird die nächste Ausbaustufe realisiert

Das evolutionäre/inkrementelle Modell Inkrementelles Modell

34


Das nebenläufige Modell

- Stammt aus der Fertigungsindustrie
- Alle Entwicklungsabteilungen einschließlich
 - Fertigung
 - Marketing
 - Vertrieb
 - · in einem Team vereint
- So viel wie möglich soll parallel ablaufen
- Ziel: termingerechte Fertigstellung (time-to-market)

Das nebenläufige Modell

Produkt

Software engineering dependability

Das nebenläufige Modell Charakteristika

- Es wird versucht einzelne Aktivitäten zu parallelisieren
 - Durch organisatorische und technische Maßnahmen
- Förderung des auf Problemlösung gerichteten Zusammenarbeitens der betreffenden Personengruppen
- Erfahrungen der betroffenen Personengruppen werden frühzeitig zusammengebracht
- Zeitverzögerungen werden reduziert durch
 - teilweise Parallelisierung vorwiegend sequentiell organisierter Arbeiten
 - Minimierung des Ausprobierens (trial and error)
 - Begrenzung des Improvisierens
 - Reduktion der Wartezeiten
 - Zwischen arbeitsorganisatorisch verbundenen Aktivitäten
- Ziel: vollständiges Produkt ausliefern

Das nebenläufige Modell Bewertung

- Frühes Erkennen und Eliminieren von Problemen durch Beteiligung aller betroffenen Personengruppen
- Optimale Zeitausnutzung
- Fraglich, ob das Ziel »right the first time« in der Software-Technik zu erreichen ist
- Risiko, dass die grundlegenden und kritischen Entscheidungen zu spät getroffen werden und dadurch Iterationen nötig werden
- Hoher Planungs- und Personalaufwand, um Fehler zu vermeiden bzw. Probleme frühzeitig zu antizipieren

Überblick über die Prozessmodelle

Prozessmodell	Primäres Ziel	Antreibendes Moment	Benutzer- beteiligung	Charakteristika
Wasserfall	minimales Management	Dokumente	gering	sequentiell, volle Breite
V-Modell	maximale Qualität	Dokumente	gering	sequentiell, volle Breite, V&V
Prototypen	Risiko- minimierung	Code	hoch	nur Teilsysteme (horizontal oder vertikal)
Evolutionär	minimale Zeit	Code	mittel	sofort: nur Kernsystem
Inkrementell	minimale Zeit & Risiko	Code	mittel	volle Definition, dann zunächst nur Kernsystem
Nebenläufig	minimale Zeit	Zeit	hoch	volle Breite, nebenläufig