
 1

Software Quality Assurance
(WS 08/09)

Problem Set 7
Due Thursday, February 12th, 2009

Problem 1: Dataflow Anomaly Analysis

Consider the following Java implementation of the class Switch. The class is a module of a
technical application that is classified as safety-critical.

A switch provides a return value that depends on the internal state and the given input value.
The return value is true if input and internal state coincide, else it is false. Every usage
modifies the internal state of the switch.

Perform a dataflow anomaly analysis for the operation toggle.

University of Kaiserslautern
Dept. of Computer Sciences

AG Software Engineering: Dependability

Prof. Dr. P. Liggesmeyer
M.Sc. Z. Guo

public class Switch {
 private boolean mode;
 public Switch() {
 init();
 }
 private void init() {
 mode=true;
 }
 public boolean toggle(boolean mode) {
 boolean result;
 if((this.mode&&mode)||(!this.mode&&!mode))
 result=true;
 else
 result=false;
 if (this.mode)
 this.mode=!mode;
 else
 mode=mode;
 return result;
 }
}

T
mode=true

F
mode=false

Eingabe(X)/
make(X)

Eingabe(X)/
make(X)

Input(X)/ Input(X)/

 2

Problem 2: Dataflow Anomaly Analysis

A software company develops software packages for commercial animal housing. A
particular function, which is implemented in the C programming language, computes the daily
amount of feed for different animal species depending on their individual weight.

Until now, this function has only been part of a software package for farms and has worked
without failures for years. Recently, it has also been included in a software package for zoos,
and now it produces wrong output in some cases. By performing a dataflow analysis, the
faults shall be revealed.

/* Own data type for enumeration of animal species */
typedef enum {COW, HORSE, PIG, ELEPHANT} Animal_A;

/* Function for determining the daily amount of feed depending
 * on the animal species and the individual weight
 */
float feedamount(Animal_A species, float weight)
{

float amount, factor;

switch (species)
{

case COW:
{

factor = 0.05;
break;

}
case HORSE:
{

factor = 0.1;
break;

}
case PIG:
{

factor = 0.02;
break;

}
} // end switch

amount = factor * weight;

return amount;

} // end feedamount

a) Which mistakes were made and how could the consequences have been avoided?

b) Perform a dataflow anomaly analysis for the operation feedamount.

 3

Problem 3: Dataflow Anomaly Analysis

Consider the following Java implementation of the operation ALL_POSITIVE, which
checks whether all elements of a one-dimensional array are positive. As parameters, the field
and its length are given.

boolean ALL_POSITIVE(int[] array,int len) {
 boolean result;
 int i,tmp;
 i=0;
 result=true;
 while (i<len&&result) {
 tmp=array[i];
 if (tmp<=0)
 result=false;
 i++;
 }
 return result;

 }

Perform a dataflow anomaly analysis for the operation ALL_POSITIVE.

 4

Problem 4: Hoare Calculus and Verification
PevPv

e };{ = is defined as the weakest precondition. Give a weakest precondition for the
following expressions:

a) {z = x + y;} z = 10
b) {x = f(x);} x = u
c) {a = 0;} a = 0 ∧ b ≥ 0

Problem 5: Hoare Calculus and Verification

Consider the following program:
Let x and y be integer variables. The shown operation should compute the power XY

a) Construct a loop invariant for verification!
b) Show correctness by completion of the annotations!

 5

Problem 6: Algebraic Specification

A tree is defined as the following:

Functions:

new: CHAR → TREE
create: TREE x CHAR x TREE → TREE
left: TREE → TREE
right: TREE → TREE
value: TREE → CHAR
isLeaf: TREE → BOOLEAN
node: TREE → INTEGER

Axioms:

∀ b, b1, b2 in TREE, ∀ c in CHAR
1. value (new (c)) = c
2. value (create (b1, c, b2)) = c
3. isLeaf (new (c)) = true
4. left (b) = if b = create (b1, c, b2) then b1 else error
5. right (b) = if b = create (b1, c, b2) then b2 else error
6. node (b) = if isLeaf (b)
 then 0
 else node (left (b)) + node (right (b)) + 1

a) Simplify the following terms by using the axioms given above. State out the used
 axioms in each step.

a. value (right (create (create (new (‘a’), ‘b’, new
(‘c’)), ‘d’, left (create (new (‘e’), ‘f’, new
(‘g’))))))

b. isLeaf (left (create (new (‘a’), ‘b’, new (‘c’))))
c. node (create (create (new (‘a’), ‘b’, new (‘c’)),
‘d’, new (‘e’)))

b) Visualize the following term: create (create (new (‘f’), ‘b’,
right (create (new (‘c’),‘g’, create (new (‘d’), ‘i’,
new (‘e’))))), ‘h’, new (‘a’))

