
© Prof. Dr. Liggesmeyer, 1Software Quality Assurance

Test of Object-Oriented Software

© Prof. Dr. Liggesmeyer, 2Software Quality Assurance

Contents

Object-Orientation and Quality Assurance
Object-Oriented Programming and Quality Assurance
Rules for development
Properties of object-oriented systems
Object-oriented module test: class test
Object-oriented integration test
Object-oriented system test

© Prof. Dr. Liggesmeyer, 3Software Quality Assurance

Object-Orientation and Quality Assurance

+ Starting point: conceptual faults
+ Use of commercial libraries (tested)
+ Re Use
+ Consistent concept for analysis, design, implementation
+ Clear concept (rules of the model)
+ Paradigm for problem analysis
- Single paradigm for problem analysis (paradigm-blindness)

© Prof. Dr. Liggesmeyer, 4Software Quality Assurance

Object-Oriented Programming and Quality Assurance

+ Consistent concept for analysis, design, implementation
+ High productivity (libraries)
+ Data abstraction
- Enormous analysis problems during the test
- Dynamic linking causes problems with real-time
- Polymorphism
- Complexities by inheritance

© Prof. Dr. Liggesmeyer, 5Software Quality Assurance

Rules for Development
Analysis and Design

Modularization is one of the major positive influencing factors wrt.
testing

Modules are clearly identified (classes)
Independent testability of the classes due to encapsulation

Consequence: Don't destroy the encapsulation concept (has to be
considered during design at the latest)
Keep up consistently the modularization concept according to object-
orientation (e.g. generation of data abstractions by the combination of data and
operations, belonging together logically, in classes)

No breaking of the encapsulation concept (e.g. no friend-classes in C++)
No public attributes
Try to produce consistency of the program architecture and the
specification structure

© Prof. Dr. Liggesmeyer, 6Software Quality Assurance

Rules for Development
Analysis and Design

Inheritance in combination with polymorphism is a critical property of
the object-orientation w.r.t. testing (understandability of the structure is
reduced)

Careful use of inheritance
No too deep inheritance hierarchies
Use of multiple inheritance not too often
Consistent preservation of a particular inheritance hierarchy (typically from
the general to the specific)

© Prof. Dr. Liggesmeyer, 7Software Quality Assurance

Rules for Development
Implementation

Observance of the rules mentioned above also for the implementation
Enhancement of the observability of the class internals (e.g., values of
the class attributes) by the use of assertions
In complex or critical parts of the software preference of
understandable, simple programming instead of elegant solutions
No use of dynamic linking in time-critical software components

© Prof. Dr. Liggesmeyer, 8Software Quality Assurance

Properties of Object-Oriented Systems

Objects and classes are more complicated than functions
Minimum level of the complexity corresponds to that of data
abstractions respectively abstract data types in classic software
developments
Objects respectively classes have

Relations
Properties
Parts
A state

They are able to
Send messages
Execute operations

© Prof. Dr. Liggesmeyer, 9Software Quality Assurance

Properties of Object-Oriented Systems

They have
Preconditions
Postconditions
Invariants
Exception handling

The interactions between parts of objects are complicated in object-
oriented software systems some parts of the component test are
identical with integration test steps for classic software systems

© Prof. Dr. Liggesmeyer, 10Software Quality Assurance

Properties of Object-Oriented Systems
Object Types

Essential objects
Model parts of the application, are identified as part of the system
requirements

Non-essential objects are generated during later phases of the
software development (design, implementation)

Are elements of the technical realization of a software system
Are often standard components

© Prof. Dr. Liggesmeyer, 11Software Quality Assurance

Object-Oriented Example

In the following as an example the control of an object-oriented
refreshments vending machine is used
The machine contains

The machine control
The customer operating unit
The service operating unit
The coin checking device
The drinks/cup dispenser
The change dispenser

© Prof. Dr. Liggesmeyer, 12Software Quality Assurance

Test of Object-Oriented Software
Object-Oriented Example

: coin checking device

: customer operating unit

: machine control

: change dispenser

: drinks/cups dispenser

: service operating unit

dispense_drinks()

dispense_cups()

select_cup()

give_change()

select_drink()

display_amount()

drinks_sold_out()

no_cups()

no_change()

determine_price()insert_coin() dispense_change()

© Prof. Dr. Liggesmeyer, 13Software Quality Assurance

Object-Oriented Unit Test: Class Test
Test of Individual Operations

The test of operations is comparable to classic testing of functions and
procedures
But operations

Often have a very simple control structure
Are highly dependent on the attributes of the object
Have interdependencies

Usually, operations may not be tested separately

© Prof. Dr. Liggesmeyer, 14Software Quality Assurance

Object-Oriented Unit Test: Class Test
Test of Individual Operations

Only in exceptional cases operations can be tested alone; here
specification of the operation „dispense_change"
The class "change dispenser" contains the information about the coins
available for paying change according to sort and number. Altogether
max. possible are 50 coins at 2 Euros, 100 coins at 1 Euro, 100 coins
at 50 Cent, 100 coins at 20 Cent and 200 coins at 10 Cent. Change is
paid according to the following rules

Payment is done with the lowest number of coins, i.e. the change is paid
at first if necessary with 2 Euro coins, then with 1 Euro coins, following 50
Cent coins, 20 Cent coins and 10 Cent coins. If a required sort of coins is
not available anymore, the payment is done with the following smaller sort
If less than twenty 10 Cent coins are available, the message no_change
(yes) is sent to activate the No-Change-display. This also happens if a
total sum of the change except for the 2 Euro coins falls below 2 Euros.
Otherwise the message no_change (no) is sent

© Prof. Dr. Liggesmeyer, 15Software Quality Assurance

Object-Oriented Unit Test: Class Test
Test of Individual Operations

Equivalence Classes

change ≥ 5,- AND
#10 Cent coins ≥ 20

change < 5,-no_change

> 100< 0coins =0100 ≥ coins > 00,20 €
> 200< 0coins =0200 ≥ coins > 00,10 €

coins
0,10 € > change ≥ 0 €0,50 € > change ≥ 0,10 €

> 50< 0coins =050 ≥ coins > 02 €
> 100< 0coins =0100 ≥ coins > 01 €
> 100< 0coins =0100 ≥ coins > 00,50 €

#10 Cent coins < 20

1 € > change ≥ 0,50 €2 € > change ≥ 1 €
< 05 € > change ≥ 2 €change ≥ 5 €change

invalidvalidCondition

© Prof. Dr. Liggesmeyer, 16Software Quality Assurance

Object-Oriented Unit Test: Class Test
Test of Individual Operations

Test Cases for valid equivalence classes

don‘t activate
no_change

change < 5,-
#10 Cent ≥ 20

change < 5,-
#10 Cent < 20

change ≥ 5,-
#10 Cent < 20

change ≥ 5,-
#10 Cent < 20

change ≥ 5,-
#10 Cent ≥ 20

change ≥ 5,-
#10 Cent ≥ 20

no_change

2 * 0,50 €
activate
no_change

0

10

0

0

0

1 €

3

5 * 0,10 €
activate
no_change

19

0

10

10

10

0,50 €

4 62

1 * 0,10 €
activate
no_change

1 * 2 €
activate
no_change

1 * 5 €
don‘t activate
no_change

Result

10911000,20 €

404202000,10 €

coins

1001502 €

10011001 €

10011000,50 €

0,00 €0,10 €2 €5 €change

51Test case

© Prof. Dr. Liggesmeyer, 17Software Quality Assurance

Object-Oriented Unit Test: Class Test
Test of Individual Operations

Test cases for invalid equivalence classes

1014203020-110102010512 €

10

10

10

10

1 €

12

50

40

30

-1

1 €

13

49

2

-1

10

1 €

14

30

-1

22

10

1 €

15

-1

8

24

10

1 €

16

30

10

101

20

1 €

9

40

101

10

10

1 €

10 178

1091100,20 €

5020142300,10 €

coins

1010101101 €

10101100,50 €

-0,10 €1 €1 €1 €change

117Test case

© Prof. Dr. Liggesmeyer, 18Software Quality Assurance

Object-Oriented Unit Test: Class Test
Test of Operations in their Class Context

Usually, operations have to be tested in the context of their class
The operations of an object of a class interact via shared attributes
The values of the attributes define the present state of the object

⇒ state machines are appropriate means for specification
⇒ state machines can serve also as the basis for testing

Field of application: Testing of operation sequences

© Prof. Dr. Liggesmeyer, 19Software Quality Assurance

Object-Oriented Unit Test: Class Test
Test of Operations in their Class Context

select_cup (no)

when
(paid_amount >= price)

act_state:
ready

act_state:
drink_chosen act_state:

amount_paid

act_state:
paym._sufficient

act_state:
dispense_drink

dispense_change /
dispense_change (paid_amount),
reset_drink, reset_price, reset_amount

Insert_coin (B) /
add_amount (B)

select_drink (G) /
P:= determine_price (G)
display_amount (P)

select_drink (G) /
P:= determine_price (G),
display_amount (P)

select_cup (yes) /
dispense__cup

/ dispense_drink
(chosen_drink)
rest:= calculate_change
(paid_amount, price),

chosen_drink: G
price: P=price(G)
paid_amount: 0

chosen_drink: ""
price: 0
paid_amount: 0

chosen_drink: G
price: price(G)
paid_amount:
amount_old + B

chosen_drink: G
price: price(G)
paid_amount:
amount_old

chosen_drink: G
price: price(G)
paid_sum:
amount_old

Timeout/
reset_drink,
reset_price,
reset_amount

Insert_coin (B) /
add_amount (B)

dispense_change /
dispense_change (rest_amount),
reset_drink, reset_price, reset_amount

dispense_change (rest_amount),
reset_drink, reset_price,
reset_amount

© Prof. Dr. Liggesmeyer, 20Software Quality Assurance

Object-Oriented Unit Test: Class Test
Test of Operations in their Class Context

Hierarchy of completeness criteria
coverage of all states at least once
coverage of all transitions at least once
coverage of all events at all transitions at least once

Hierarchy
all events ⊇ all transitions ⊇ all states

Important: Do not forget to test the error handling

© Prof. Dr. Liggesmeyer, 21Software Quality Assurance

Object-Oriented Unit Test: Class Test
Structural Test

Control flow test techniques (e.g. branch coverage test) are relatively
inappropriate, because they disregard the interactions between
operations through shared attributes
Data flow test techniques are more appropriate
The attributes are written (defined) and read (used) by operations. A
data flow test based on the attributes demands to test interactions
concerning the shared data

© Prof. Dr. Liggesmeyer, 22Software Quality Assurance

Object-Oriented Unit Test: Class Test
Test of Operations in their Class Context

select_cup (no)

when
(paid_amount >= price)

act_state:
ready

act_state:
drink_chosen act_state:

amount_paid

act_state:
paym._sufficient

act_state:
dispense_drink

dispense_change /
dispense_change (paid_amount),
reset_drink, reset_price, reset_amount

Insert_coin (B) /
add_amount (B)

select_drink (G) /
P:= determine_price (G)
display_amount (P)

select_drink (G) /
P:= determine_price (G),
display_amount (P)

select_cup (yes) /
dispense__cup

/ dispense_drink
(chosen_drink)
rest:= calculate_change
(paid_amount, price),

chosen_drink: G
price: P=price(G)
paid_amount: 0

chosen_drink: ""
price: 0
paid_amount: 0

chosen_drink: G
price: price(G)
paid_amount:
amount_old + B

chosen_drink: G
price: price(G)
paid_amount:
amount_old

chosen_drink: G
price: price(G)
paid_sum:
amount_old

Timeout/
reset_drink,
reset_price,
reset_amount

Insert_coin (B) /
add_amount (B)

dispense_change /
dispense_change (rest_amount),
reset_drink, reset_price, reset_amount

dispense_change (rest_amount),
reset_drink, reset_price,
reset_amount

© Prof. Dr. Liggesmeyer, 23Software Quality Assurance

Object-Oriented Unit Test: Class Test
Test of Operations in their Class Context

1

2

3
M1(...)

M2(...)

M1(...)

M3(...)

M4(...)

State-based test

M3
equivalence
class partitioning

structural test

© Prof. Dr. Liggesmeyer, 24Software Quality Assurance

Object-Oriented Unit Test: Class Test
Test of Operations in their Class Context

Problem
abstract and parameterized classes don‘t permit direct instantiation of objects
diversity of the producible objects increases the complexity
only concrete objects can be tested. Question: Which?
abstract and parameterized classes are to concrete classes as normal classes are
to their objects

Abstract classes
Define the syntactic and semantic interface for operations, without offering an
implementation
The implementation for abstract methods is given in a subclass of the abstract
class

Parameterized classes
contain formal class parameters which have to be replaced with actual values

© Prof. Dr. Liggesmeyer, 25Software Quality Assurance

Object-Oriented Unit Test: Class Test
Testing of Abstract and Parameterised Classes

Instantiation of a concrete class
Testing of this class as a normal class
Questions

Which instantiation has to be chosen?
How should it be tested?

Rule: Generation of a concrete class as simple as possible, i.e.
abstract classes

- realization of implementations for abstract methods
• if possible, empty
Otherwise
• As simple as possible, but the specification must be fulfilled; only as

complicated as necessary
parameterized classes

- Selection of parameters which make the test as simple as possible (e.g.
“stack for integer"

© Prof. Dr. Liggesmeyer, 26Software Quality Assurance

Object-Oriented Integration Test
Base Classes

Questions
Does the interface between two objects work in both directions (passing of
parameters and results)?

Idea
Coverage of the specification in both directions

Generation of test cases
which cover the different parameters, that might be used by the calling
object
which cover the different return values generated by the service provider

Equivalence class partitioning of the interface between service user
and service provider

© Prof. Dr. Liggesmeyer, 27Software Quality Assurance

Object-Oriented Integration Test
Integration Test of Base Classes

Example: Integration test of the objects „coin checking device" and
„machine control"

: coin checking device

: customer operating unit

: machine control

: change dispenser

: drinks/cups dispenser

: service operating unit

dispense_drinks()

dispense_cups()

select_cup()

give_change()

select_drink()

display_amount()

drinks_sold_out()

no_cups()

no_change()

determine_price()insert_coin() dispense_change()

© Prof. Dr. Liggesmeyer, 28Software Quality Assurance

Object-Oriented Integration Test
Integration Test of Base Classes

Test of the interaction of the classes coin checking device and
machine control via the message insert_coin()

Interface specification of the operation insert_coin()
- The operation insert_coin() expects a non-negative value (maximum

value = 1000). It specifies the value of the coin in cents
- The operation has no return value

Interface parameters of the calling routine at the coin checking device
- The following values may be used for the interface of the message

insert_coin(): 10, 20, 50, 100, 200

© Prof. Dr. Liggesmeyer, 29Software Quality Assurance

Object-Oriented Integration Test
Integration Test of Base Classes

Consequences for the integration test
It has to be ensured that the value of the interface parameter fulfils the
following condition (so-called assertion)

- (value >= 0) AND (value <= 1000)
Equivalence classes and test cases

- value = 10
- value = 20
- value = 50
- value = 100
- value = 200

Testing of the return value is not possible as no return values exist

© Prof. Dr. Liggesmeyer, 30Software Quality Assurance

Object-Oriented Integration Test
Integration Test and Inheritance

Situations
Inheritance at the service provider
Inheritance at the service user
Inheritance at the service provider and at the service user

© Prof. Dr. Liggesmeyer, 31Software Quality Assurance

Object-Oriented Integration Test
Integration Test and Inheritance - Example

In the new version of the refreshments vending machine it is possible
to pay with money bills (5 Euros and 10 Euros). The following
changes are made

A class coin checking device/bill reader is implemented. The operation
checking() is augmented w.r.t. checking bills. This operation overwrites
the original operation. A new operation accept_no_bills() is added, that
disables or enables the acceptance of bills
The class change dispenser gets a subclass, with a new operation
dispense_change(), that overwrites the old operation. The new operation
signals whether it is possible to pay with bills. The payment with
banknotes is disabled if the money stock in coins falls below 15 Euros.
Bills are not returned as change
The class customer operating unit gets a subclass which contains a new
operation signal_no_bills(). This operation signals whether it is possible to
pay with bills

© Prof. Dr. Liggesmeyer, 32Software Quality Assurance

Object-Oriented Integration Test
Integration Test and Inheritance

: coin checking device/
bill reader

: customer operating unit/bills

: machine control

: change dispenser/bills

: drinks/cups dispenser

: service operating unit

dispense_drinks()

dispense_cups()

select_cup()

give_change()

select_drink()

display_amount()

drinks_sold_out()

no_cups()

no_change()

determine_price()insert_coin() dispense_change()

signal_no_bills()

accept_no_bills()

© Prof. Dr. Liggesmeyer, 33Software Quality Assurance

Object-Oriented Integration Test
Inheritance at the Service Provider

Situation
Integration test of the service user and the superclass of the service
provider is executed according to the procedure for the integration test of
base classes

Problem
Operations of the service provider can be inherited from the superclass
(the old service provider), but not necessarily. Methods of the new service
provider as well as methods of the old service provider (the super class)
can be executed

© Prof. Dr. Liggesmeyer, 34Software Quality Assurance

Object-Oriented Integration Test
Inheritance at the Service Provider

Procedure
No additional test cases for inherited operations, as this case is covered
already by the integration test of the base classes repeat test cases
No additional test cases concerning overwritten operations for which only
the implementation has changed, as the interface specification remained
identical and this case is also covered yet repeat test case

© Prof. Dr. Liggesmeyer, 35Software Quality Assurance

Object-Oriented Integration Test
Inheritance at the Service Provider - Input Interface (parameters)

If the interface specification of the overwriting method has changed,
the following case are to be distinguished

The interface of the overwriting method is more specific (i.e. accepts less
data) than the interface of the overwritten method

- Definition of a new assertion
- Repetition of all test cases from the integration test of the base

classes
If the interface becomes more general by the overwriting of the method no
additional test cases are required, as this case is covered already by the
test of the base classes repeat test cases

© Prof. Dr. Liggesmeyer, 36Software Quality Assurance

Object-Oriented Integration Test
Inheritance at the Service Provider - Output Interface (parameters), Example

If necessary additional test cases for the coverage of a wider interface
which were not covered sufficiently during the test of the base classes
Example: Enhanced version of the refreshments vending machine

The new change dispenser is a service provider (dispense_change())
concerning the machine control
The overwriting operation dispense_change () has only a modified
implementation (transmission of additional messages). The interface
specification is unchanged
It is sufficient to repeat the old test cases. The assertion is unchanged

© Prof. Dr. Liggesmeyer, 37Software Quality Assurance

Object-Oriented Integration Test
Inheritance at the Service User - Output Interface
(parameters)

No additional test cases for inherited operations repeat test cases
No additional test cases if the interface of the overwriting operation in
call direction is more specific than the interface of the overwritten
operation (i.e. calls which were possible before are not possible
anymore) repeat test cases
If the interface becomes wider (i.e. calls which were not possible
before are possible now) the old test cases are to be completed
accordingly repeat old test cases and execute new test cases
additionally
Comment: the assertion is unchanged

© Prof. Dr. Liggesmeyer, 38Software Quality Assurance

Object-Oriented Integration Test
Inheritance at the Service User - Input Interface (results)

Repeat test cases. If a failure occurs due to a more specific interface
an appropriate correction is required

© Prof. Dr. Liggesmeyer, 39Software Quality Assurance

Object-Oriented Integration Test
Inheritance at the service provider and at the service user

Procedure
Apply technique to deal with inheritance at the service provider
Apply technique to deal with inheritance at the service user
Add test cases for the new interactions between service provider and
service user

© Prof. Dr. Liggesmeyer, 40Software Quality Assurance

Object-Oriented Integration Test
Inheritance at the service provider and at the service user

Between the derived classes change dispenser/bills and coin checking
device/bill reader there is a service provider-service user-relation.
Additionally to the described tests the interaction by the message
accept_no_bills() has to be tested
Test cases

accept_no_bills(yes)
accept_no_bills(no)

© Prof. Dr. Liggesmeyer, 41Software Quality Assurance

Object-Oriented Integration Test
Inheritance and Integration Test: Summary

Table 0 (start table) for handling inheritance

evaluate table 2 unmodifiedgenerated by
inheritance

evaluate tables 1.1,
1.2 and 2; add test
cases for interaction
of the subclasses

generated by
inheritance

generated by
inheritance

evaluate tables 1.1
and 1.2

generated by
inheritance

unmodified

repeat test casesunmodifiedunmodified

actionservice providerservice user

© Prof. Dr. Liggesmeyer, 42Software Quality Assurance

Object-Oriented Integration Test
Inheritance and Integration Test: Summary

Table 1.1: Testing the call interface

new assertion;
repeat test cases

more specificoverwriting

repeat test casesmore generaloverwriting

repeat test casesidenticaloverwriting

repeat test cases-inherited

actioncall interface of the
service providing
operation

service providing
operation

© Prof. Dr. Liggesmeyer, 43Software Quality Assurance

Object-Oriented Integration Test
Inheritance and Integration Test: Summary

Table 1.2: Testing the return interface

repeat test cases;
generate additional
test cases

more generaloverwriting

repeat test casesmore specificoverwriting

repeat test casesidenticaloverwriting

repeat test cases-inherited

actionreturn interface of
the service
providing operation

service providing
operation

© Prof. Dr. Liggesmeyer, 44Software Quality Assurance

Object-Oriented Integration Test
Inheritance and Integration Test: Summary

Table 2: test of the call and the return interface

repeat test cases;
generate additional
test cases

more generaloverwriting

repeat test casesmore specificoverwriting

repeat test casesidenticaloverwriting

repeat test cases-inherited

actioncall interface of the
service providing
operation

service providing
operation

© Prof. Dr. Liggesmeyer, 45Software Quality Assurance

Object-Oriented System Test

Except for the specification-based test there are no differences
compared to the test of classic software

The system is a black box it is irrelevant, whether its internal structure
is object-oriented or not

Development of specification-based test cases from OOA-diagrams
DFDs
State machines
Use cases according to Jacobson

- Scenarios from a system user‘s viewpoint (human or other system)
- Not very systematic
- No completeness in complicated systems
- Can be annotated with time conditions (MSCs) performance test!

