
© Prof. Dr. Liggesmeyer, 1Software Quality Assurance

Software Measurement

© Prof. Dr. Liggesmeyer, 2Software Quality Assurance

Contents

Motivation
Measure types
Requirements
Evaluation and calibration of measures
Measure scales
Data Acquisition for Measuring
Important measures
Case study

© Prof. Dr. Liggesmeyer, 3Software Quality Assurance

Motivation

When you can measure what you are speaking about, and express it in
numbers, you know something about it; but when you cannot measure
it, when you cannot express it in numbers, your knowledge is of a
meager and unsatisfactory kind
(Lord Kelvin, Popular Lectures and Addresses, 1889)

Remark
Generally, the terms measure and metrics are used as synonyms. This
is not quite correct. For this reason the correct term "measure" is used
here

© Prof. Dr. Liggesmeyer, 4Software Quality Assurance

Motivation

Software is an abstract, immaterial product
Control of the quality, the complexity, the productivity, the development
process, the costs and further important properties is difficult
Idea: Definition of a quantified "sensor" which allows to draw
conclusions w.r.t. interesting properties
Measures quantify certain aspects of software. Measures can only
indirectly point to potential sources of problems. A significant deviation
of a measure from its usual value might be an indicator for a problem,
but this is not guaranteed

© Prof. Dr. Liggesmeyer, 5Software Quality Assurance

Motivation
Application of Measures

Control of software quality
Control of software complexity
Control of the software development process
Costs and time prediction
Costs and time tracing
Definition of standards
Early problem identification
Comparison and evaluation of products
Feedback concerning the introduction of new methods, techniques,
and tools

© Prof. Dr. Liggesmeyer, 6Software Quality Assurance

Motivation
Application of Measures

process measures product measures

test coverage

McCabefunction points

LOC

actual vs.
planned
milestone
time

average productivity

project measures

actual costs / planned costs

Fault
detection
rate in code
inspections

© Prof. Dr. Liggesmeyer, 7Software Quality Assurance

Measure Types

Product Measures
Information about properties of a product (complexity, size, ...).
Identification of critical product parts
Classification and comparison of products

Process Measures
Information about properties of the software development process
(productivity, failure costs, ...)
Control of the proper execution of process steps.

Project Measures
Planning and tracking of a project

© Prof. Dr. Liggesmeyer, 8Software Quality Assurance

Measure Types

Measures can involve several areas
Example: Function Point
Goal: evaluation of the development costs of a product on the basis of its
functionality at an early stage, e.g. on the basis of the product
specification
Measures the product size (function points)
Uses the maturity of the development process to convert function points
into staff-months (table or curve)
Function point method involves product and process measures

© Prof. Dr. Liggesmeyer, 9Software Quality Assurance

Requirements

Simplicity
Is the result so simple that it can be interpreted easily?

Suitability
Does the measure show an appropriate correlation to the desired property?

Robustness
Is the value of the measure stable with regard to minor changes of the measured
software?

Timeliness
Is the measure available early enough?

Processability
Is it possible to process the measures (e.g. statistically scale type)?

Reproducibility
The value of a measure should have an identical value for a particular product
independently of the mode of generation

© Prof. Dr. Liggesmeyer, 10Software Quality Assurance

Requirements of Measures
Reproducibility

Examples
McCabe's cyclomatic number: e-n+2
e = number of edges of a CFG; n = number of nodes of a CFG; CFG =
control flow graph

- Completely reproducible
Lines of Code (LOC)
Count blank lines? Count comment lines?

- Completely reproducible, if specified appropriately
Function Points: manual evaluation of complexities required

- Not completely reproducible
Understandability

- Not reproducible

© Prof. Dr. Liggesmeyer, 11Software Quality Assurance

Evaluation and Calibration of Measures
Evaluation

Suggesting lower or upper limits of measures is difficult
Which values are to be regarded as "normal" might be determined
based on expertise
A deviation from the usual value might or might not be an indication of
a problem

© Prof. Dr. Liggesmeyer, 12Software Quality Assurance

Evaluation and Calibration of Measures
Calibration

The assignment between measures and the relevant properties
requires a calibration which has to be adapted to changed situations if
necessary
Empirical and theoretical models can be distinguished
Examples

Theoretical model for costs (e.g., Halstead measures):
E = ... size2 ...
The quadratic relation between costs and size was identified on the basis
of theoretical considerations
Empirical model for costs: E = ... size 1,347 ...
The exponent 1,347 was determined on the basis of statistical data
evaluation

© Prof. Dr. Liggesmeyer, 13Software Quality Assurance

Evaluation and Calibration of Measures
Example of a Mixed Theoretical and Empirical Model

description
of
functionality

Function
Points costs

theoretical
step

empirical
step

© Prof. Dr. Liggesmeyer, 14Software Quality Assurance

Measure Scales

If abstract properties are expressed as numerical values it has to be
considered which operations are useful with the numerical values
Examples

Measuring of length
- Board a is one meter in length. Board b is two meter in length. Therefore,

board b is twice as long as board a
- This statement makes sense

Measuring of temperature
- Today it is 20°C. Yesterday it was 10°C. Thus, today it is twice as warm as

yesterday
- This is wrong, the right answer is: Today the temperature is about 3,5 %

higher than yesterday
Obviously there is a difference between the scale of the temperature in °C and the
length in meters which leads to the fact that certain operations are not applicable to
the temperature scale

© Prof. Dr. Liggesmeyer, 15Software Quality Assurance

Measure Scales

Nominal scale
Free description of certain properties with labels
Inventory numbers of books of a library (DV 302, PH 002, CH 056, ...)
Names of different requirements engineering methods (SA; SADT, OOA; IM, ...)

Ordinal scale
Mapping of an ordered aspect of a property to an ordered number of
measurements in such a way that the order is maintained
Mapping of the arrival of patients to the waiting numbers in a doctor's surgery

Interval scale
A scale which is still valid if transformations g(x) = ax + b, with a > 0 are applied to it
Temperature scales in degree Celsius or Fahrenheit. If F is a temperature in the
Fahrenheit-scale the temperature C in the Celsius-scale can be calculated as
follows: C = 5/9 (F - 32). The relations between temperatures are maintained

© Prof. Dr. Liggesmeyer, 16Software Quality Assurance

Measure Scales

Rational scale
A scale where measurements can be correlated (statements like double,
half, three times as much, ... make sense)
Length in meters (it is twice as far from a to b as from c to d)
Temperature in Kelvin

Absolute scale
A scale which is the only possibility to measure the issue

- Counting
- Probabilities

© Prof. Dr. Liggesmeyer, 17Software Quality Assurance

Measure Scales
Determination of Scales: Criteria for Ordinal Scales

Ordinal scales are characterized by the property that the relation of the
properties of two objects retaining the relation is mapped to the measurements
The empirical relation concerning the properties is mapped to a corresponding
formal relation of the measurements
Empirical relation: for the software modules a and b the binary relations •≥
(more complex or equal complex), •> (more complex) and •≈ (equal complex)
which can be applied to the modules are referred to as empirical relations
The intuitive idea of complexity, as people would decide it, determines the
empirical relation
A is to be the set of all modules with a, b, c ∈ A. It is written

a •> b; (a is more complex than b)
a •≈ b; (a is as complex as b)
a •≥ b ⇔ a •> b or a •≈ b;

© Prof. Dr. Liggesmeyer, 18Software Quality Assurance

Measure Scales
Determination of Scales: Weak Order

A relation •≥ on a set A is called order if
a) ∀ x, y, z ∈ A: x •≥ y ∧ y •≥ z ⇒ x •≥ z (transitivity)
b) ∀ x ∈ A, ∃ y ∈ A: x •≥ y or y •≥ x (comparability)

Example: the relation "is ancestor of" on the set of persons
An order is called quasi order if

c) ∀ x ∈ A: x •≥ x (reflexivity)
c implies b: every x is at least comparable to itself
Quasi orders can contain elements which cannot be ordered
Example: the identity "=" on every not empty set

A quasi order is called half order if
d) x •≥ y ∧ y •≥ x ⇒ x = y (anti-symmetry)

Half orders also can contain elements which cannot be ordered
Example: the relation „≥“ on the set of integers

© Prof. Dr. Liggesmeyer, 19Software Quality Assurance

Measure Scales
Determination of Scales: Weak Order

A half order is called linear if
e) ∀ x, y ∈ A: x •≥ y or y •≥ x (connectivity, completeness)

Example: the relation "≥" on the set of integers
Orders which fulfill the axioms a, c (and thus also b) and e, but not
necessarily d, are called weak order
In the following the empirical relation •≥ is considered. It is demanded
that it generates a weak order on the set of the modules A, fulfilling the
following axioms

axiom 1: reflexivity: a •≥ a, ∀ a ∈ A
axiom 2: transitivity: a •≥ b, b •≥ c ⇒ a •≥ c, ∀ a, b, c ∈ A
(If the complexity of module a is greater equal the complexity of module b
and the complexity of b is greater equal the complexity of c also the
complexity of a is greater equal the complexity of c.)
axiom 3: connectivity (completeness): a •≥ b or b •≥ a, ∀ a, b ∈ A

© Prof. Dr. Liggesmeyer, 20Software Quality Assurance

Measure Scales
Determination of Scales: Ordinal Scale

If the axioms 1 to 3 for the empirical relation •≥ concerning A are valid
an ordinal scale exists

((A, •≥), (ℜ, ≥), f), with a •≥ b ⇔ f(a) ≥ f(b), ∀ a, b ∈ A
(A, •≥) is the empirical relational system (modules and their empirical
relation)
(ℜ, ≥) is the formal relational system (the numerical values of the
measures and the corresponding formal relation ≥)
f is a measure

© Prof. Dr. Liggesmeyer, 21Software Quality Assurance

Measure Scales
Determination of Scales: Rational Scale

A rational scale has to meet all criteria of an ordinal scale. The
empirical and formal relational system has to be enhanced as follows

((A, •≥, °), (ℜ, ≥, +), f),
with a •≥ b ⇔ f(a) ≥ f(b), (ordinal scale)
and f(a ° b) = f(a) + f(b), (rational scale)
∀ a, b ∈ A

° is a binary operation for the empirical relational system. + is the
corresponding binary operation for the formal relational system

© Prof. Dr. Liggesmeyer, 22Software Quality Assurance

Measure Scales
Determination of Scales: Rational Scale

A measure f: A → ℜ which meets the requirements of the relational
scale mentioned above exists when

(A, •≥) fulfils the axioms 1, 2, 3 (reflexivity, transitivity, connectivity)
axiom 4: a ° (b ° c) •≈ (a ° b) ° c, ∀ a, b, c ∈ A
(associativity)
axiom 5: a •≥ b ⇔ a ° c •≥ b ° c ⇔ c ° a •≥ c ° b , ∀ a, b, c ∈ A
(Monotony)
axiom 6: if c •> d, it is valid: ∀ a, b ∈ A, ∃ n ∈ ℵ, a ° nc •≥ b ° nd
(archimedic axiom)

© Prof. Dr. Liggesmeyer, 23Software Quality Assurance

Measure Scales
Empirical Relation

As the empirical relation •≥ is used in the definition of the scales it is
required to determine it precisely
Problem: a general definition is not possible, as the empirical relation
reflects an intuitive idea of complexity
But: It is possible to define the empirical relations with the aid of small
modifications applied to an object to be measured, by considering
whether these modifications lead to an increased, reduced or identical
complexity
Example: Lines of Code (LOC)

modification 1: add code line
modification 2: interchange code lines
modification 3: move code line

© Prof. Dr. Liggesmeyer, 24Software Quality Assurance

Measure Scales
Empirical Relation

Idea concerning the measure LOC: The size is to be measured. The
modification 1 increases the complexity of the modified module b
compared to a, while the modifications 2 and 3 generate an identical
complexity

M1: b •> a ⇒ LOC (b) > LOC (a)
M2: b •≈ a ⇒ LOC (b) = LOC (a)
M3: b •≈ a ⇒ LOC (b) = LOC (a)

In this way the empirical relation •≥ was defined for the measure LOC
If these properties of the modifications 1 to 3 are accepted LOC fulfils
the criteria of the ordinal scale, i.e., then the measurements can be
used as ordinal scale

© Prof. Dr. Liggesmeyer, 25Software Quality Assurance

Measure Scales
Empirical Relation

The measure LOC further fulfils the axioms 1 to 6 if as binary operation
° the textual chaining is used
Further it is valid, that

LOC (a ° b) = LOC (a) + LOC (b) (additive)

The values of the measure LOC can be used as a rational scale w.r.t.
the agreed operation

© Prof. Dr. Liggesmeyer, 26Software Quality Assurance

Measure Scales
Example for the Measure Discussion – the Cyclomatic
Number

The cyclomatic number Z of a control flow graph g is defined as
Z = e - n + 2p
e = number of edges, n = number of nodes, p = number of the considered
control flow graphs

For a single module (p = 1) we get
Z = e - n + 2

© Prof. Dr. Liggesmeyer, 27Software Quality Assurance

Measure Scales
Example for the Measure Discussion – the Cyclomatic
Number

operation
is the sequence

Z = 4-4+2 =2
Z' = 4-4+1 = 1

Z = 4-4+2 =2
Z' = 4-4+1 = 1

Z = 9-8+2 = 3
Z' = 9-8+1 = 2

© Prof. Dr. Liggesmeyer, 28Software Quality Assurance

Measure Scales
Discussion of the Measure Z: Ordinal Scale

M1: add a node and an edge
M2: move/displace an edge
M3: add an edge
M1: b •≈ a ⇒ Z (b) = Z (a)
M2: b •≈ a ⇒ Z (b) = Z (a)
M3: b •> a ⇒ Z (b) > Z (a)
With regard to the specified modifications we see

b •≥ a ⇔ Z(b) ≥ Z(a);

i.e. the values can be used as ordinal scale

© Prof. Dr. Liggesmeyer, 29Software Quality Assurance

Measure Scales
Discussion of the Measure Z: Rational Scale

Obviously Z does not fulfill the condition of the additivity concerning the
operation ° (sequence), i.e., Z(a) + Z(b) ≠ Z(a ° b)
The values of the measures Z concerning the operation ° (sequence)
cannot be used as rational scale. On the other hand Z fulfils the
axioms 1 to 6. Thus, a measure Z' must exist which is additive
Z' = Z - 1 = e - n + 1
(Can be used as rational scale concerning the operation sequence.)

© Prof. Dr. Liggesmeyer, 30Software Quality Assurance

Data Acquisition for Measuring

Measures are directly enumerable, calculated or evaluated
parameters, if necessary also a corresponding combination

input parameters (primary data) for the generation of measures
have to be collected
Example

enumerable measure: Lines of Code
calculated measure: MTTF
evaluated measure: function points

Questions
Which primary data can be determined automatically (e.g. from the source
code)?
Which primary data have to be collected manually?
Which primary data can only be gathered based on expertise?

© Prof. Dr. Liggesmeyer, 31Software Quality Assurance

Data Acquisition for Measuring

Principle
Collect automatically and tool supported as much of the required
information as possible!
good cost-value ratio

Pure product measures often can be collected fully automatic from the
product
Collection of the primary data directly from the product
Application of measuring tools
Example

Lines of Code
McCabe's cyclomatic number
Halstead's measures

basically complexity measures

© Prof. Dr. Liggesmeyer, 32Software Quality Assurance

Data Acquisition for Measuring

But: some measures relating to products cannot be derived from them
Example

MTTF (mean time to failure) or
Faults / LOC

- Relate to a product
- Require an error statistics for this product

basically quality measures

© Prof. Dr. Liggesmeyer, 33Software Quality Assurance

Data Acquisition for Measuring
Process Measures

Parts of the required data can be gained with corresponding tool
application directly from the process

Example: test coverage

Parts have to be taken manually
Example: costs, time, error statistics

measure
is
correlated with

property
of interest

n m

© Prof. Dr. Liggesmeyer, 34Software Quality Assurance

Data Acquisition for Measuring
Important Primary Data

Quality-related
Number, type and cause of faults
Number of problem messages
Number of changes

Costs-related
Costs of fault corrections
Costs and time exposure (development and testing costs per process
step)

Product-related
Size of the product using an appropriate measure (LOC, pages,
processes, number of entries in the data dictionary, function points,
number of modules, ...)

© Prof. Dr. Liggesmeyer, 35Software Quality Assurance

Data Acquisition for Measuring
Correcting Side-Effects

Many measures do not only measure a single property, but are
influenced by several factors
Collection of the primary influencing variable
Collection of side effects
Example
If the increase of the MTTF is used as a measure for reliability of a
system this relation may be distorted if only failure statistics are used
Causes

During the observation period the number of the software systems in
operation is usually not constant, so that the failure probability declines or
rises
Larger modifications (new version, functional enhancement, etc.) increase
the failure probability

© Prof. Dr. Liggesmeyer, 36Software Quality Assurance

Data Acquisition for Measuring
Correcting Side-Effects

Consequence
Major influencing parameters regarded as side-effects have to be
measured in order to correct the primary measure from their influence
Example MTTF

- Recording the number of installed systems over time
- Recording important events: new version, etc.

© Prof. Dr. Liggesmeyer, 37Software Quality Assurance

Important Measures
The Halstead Measures

Set of measures concerning different aspects, e.g., complexity, size,
costs, etc.
Are all based on theoretical considerations
Are based on the program text (number of the different operands and
operators and total number of the operands and operators)
Halstead's costs measure E does not necessarily fulfill the criterion of
timeliness
No direct relation to natural parameters; unnatural measures
Common as measures in analysis and test tools
Remark: Halstead's costs measure determines a quadratic
dependence between the size of a module and the costs for its
implementation modularization

© Prof. Dr. Liggesmeyer, 38Software Quality Assurance

Important Measures
The Halstead Measures

The four basic parameters of the Halstead measures are
η1 – number of operators
η2 – number of operands
N1 – total number of operators
N2 – total number of operands

From these four measures two further simple measures can be derived
η = η1 + η2 – size of the vocabulary
N = N1 + N2 – length of the implementation

By considering some combinatorial rules the formula for the calculated
program length N is derived

N = η1 log2 η1 + η2 log2 η2

© Prof. Dr. Liggesmeyer, 39Software Quality Assurance

Important Measures
The Halstead Measures

Program volume V
V = N log2 η
V is the volume of the program in bits provided that a binary coding
with a fixed word length of the vocabulary is used
The potential program volume V* depends only on the algorithm, not
on the programming language used for the implementation
V*= (N1*+N2*) log2 (η1* + η2*)

= (2 + η2*) log2 (2 + η2*)
The quotient of the potential volume V* and V is called level

© Prof. Dr. Liggesmeyer, 40Software Quality Assurance

Important Measures
The Halstead Measures

Every implementation has a level L which is smaller or at best equal
one. The more L approximates the value one, the more appropriate is
a programming language for the implementation of a given algorithm
A measure for the difficulty to implement an algorithm in a
programming language is the reciprocal D of the level (Difficulty)

A programming language inappropriate for the implementation of an
algorithm causes a rise of the volume V and thus also of the difficulty D

D = 1
L

© Prof. Dr. Liggesmeyer, 41Software Quality Assurance

Important Measures
The Halstead Measures

The volumes L und D are a measure for the problem adequacy of the
used programming language and for the difficulty to implement a given
algorithm in a particular language
The Effort E necessary to code an algorithm is proportional to the
program volume and to the difficulty of the coding. Difficulty D is the
reciprocal of the program level L
Effort E then can be defined to

E = = V V2

L V*

© Prof. Dr. Liggesmeyer, 42Software Quality Assurance

Important Measures
The Halstead Measures: Example

PROCEDURE CountChars (VAR VowelNumber : CARDINAL;
VAR TotalNumber : CARDINAL);

VAR Char : CHAR;
BEGIN

READ (Char);
WHILE ((Char ≥ „A“) AND (Char ≤ „Z“)
AND TotalNumber < MAX (CARDINAL))) DO

TotalNumber := TotalNumber + 1;
IF ((Char = „A“) OR (Char = „E“) OR (Char = „I“)

OR (Char = „O“) OR (Char = „U“)) THEN
VowelNumber := VowelNumber + 1;

END; (* IF *)
READ (Char);

END; (* WHILE *)
END CountChars;

© Prof. Dr. Liggesmeyer, 43Software Quality Assurance

Important Measures
The Halstead Measures: Example

Number of operators: η1 = 20
Number of operands: η2 = 10
Total number of operators: N1 = 58
Total number of operands: N2 = 26
From this follows
N = N1 + N2 = 84
and
N = η1 log2 η1 + η2 log2 η2

= 20 log2 20 + 10 log2 10
= 86,4 + 33,2
= 119,6

© Prof. Dr. Liggesmeyer, 44Software Quality Assurance

Important Measures
Data Measures

The primary purpose of programs is the processing of data
Live Variables

Is based on the assumption that the generation of a statement is the more
difficult the more variables have to be considered at the execution of this
statement
Definition: a variable "lives" within a procedure from its first to its last
reference

© Prof. Dr. Liggesmeyer, 45Software Quality Assurance

Important Measures
Data Measures

Example
1 PROCEDURE MinMax (VAR Min: CARDINAL; VAR Max:
CARDINAL);
2 VAR Help : CARDINAL;
3 BEGIN
4 IF Min > Max THEN
5 Help := Min;
6 Min := Max;
7 Max := Help
8 END;
9 END MinMax;

© Prof. Dr. Liggesmeyer, 46Software Quality Assurance

Important Measures
Data Measures

LV: medium number of live variables =

In the example: 5,2
4

10 ==LV

line live variables number

4 Min, Max 2

5 Min, Max, Help 3

6 Min, Max, Help 3

7 Help, Max 2

statementsexecutableofnumber
 variableslive ofnumber total

© Prof. Dr. Liggesmeyer, 47Software Quality Assurance

Important Measures
Data Measures: Variable Span

Additionally, the span of the variable references is important
Example

Min is referenced at lines 4, 5 and 6
Max is referenced at lines 4, 6 and 7
Help is referenced at lines 5 and 7
The spans of Min are: 1 line, 1 line;
averaging: 1
The spans of Max are: 2 lines, 1 line;
averaging: 1,5
The spans of Min are: 2 lines;
averaging 2

The average span of all variables is 1,4

© Prof. Dr. Liggesmeyer, 48Software Quality Assurance

Important Measures
The Cyclomatic Complexity

A common complexity measure
Often has the aura of an "important" key value
Derives from graph theory (strongly connected graphs) and thus can
be related to control flow graphs and consequently to programs
represented by these graphs
Formula: e – n + 2
(e = number of edges, n = number of nodes)
Very easy to determine as for programs highly dependent on the
number of decisions (it is simply the number of decisions + 1)
Appropriate as a complexity measure if the number of decisions says
much about the complexity of the program
Probably the most widespread measure in analysis and test tools

© Prof. Dr. Liggesmeyer, 49Software Quality Assurance

Important Measures
More Control Structure Measures

Nesting
Every statement is assigned a nesting level according to the following
rules

- To the first executable statement the value 1 is assigned
- All statements that belong to a statement sequence are on the same

nesting level
- If a statement a is on the nesting level I and statement b is within a

selection or loop controlled by a, statement b has the nesting level l +
1

The value of this measure is the arithmetic mean of the nesting levels of
all statements

© Prof. Dr. Liggesmeyer, 50Software Quality Assurance

Importance of Software Measuring

Software measurement is, e.g., important for the following areas
Flat management structures
Compliancy to certain software engineering standards
High capability maturity levels

© Prof. Dr. Liggesmeyer, 51Software Quality Assurance

Software Measuring and Flat Management Structures

Flat management structures are a trend
A manager supervises more developers
The supply and aggregation of information is not done anymore via the
middle management, but via automated measuring systems
Interventions of the management are required only if measurements
indicate problems

© Prof. Dr. Liggesmeyer, 52Software Quality Assurance

Software Measuring and Software Engineering Standards

Standards increasingly gain importance in software engineering (e.g.
ISO 9001)

Proof of qualification for potential clients
Marketing criterion; differentiation from non-accredited competitors
Important in the context of product liability
In some areas definitely required
All standards underline the importance of a systematic procedure,
transparency, and control of the development process

This can be proven with the aid of corresponding measures

© Prof. Dr. Liggesmeyer, 53Software Quality Assurance

Software Measuring and the Capability Maturity Model

Capability Maturity Model classify the maturity of a software
development process using maturity levels. The model used by the
SEI uses the following levels: 1-initial, 2-repeatable, 3-defined, 4-
measured, 5-optimizing
The attainment of the maturity levels 4 and 5 is possible only with the
existence and use of a measuring system which enables the following
operations

Measuring of productivity and quality
Evaluation of projects on the basis of these measuring
Identification of deviations
Corrective actions in the case of deviations
Identification and control of project risks

© Prof. Dr. Liggesmeyer, 54Software Quality Assurance

Case Study

Failure lists are to be evaluated to make a decision for systematic
techniques, methods, and tools due to the number of failures, their
causes, and the costs for their correction
The goal is

A clear reduction of the number of faults to reduce the problems of clients
with the software and to demonstrate high quality
The prevention or early detection of costly failures in order to save money

© Prof. Dr. Liggesmeyer, 55Software Quality Assurance

Case Study

Failure list

No.
problem
description

date
of
message

corrected
at

correction
costs
(MDays)

correction
time
(workdays) fault cause

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

07.03.92
11.04.92
13.04.92
04.05.92
23.05.92
01.06.92
02.06.93
15.06.92
01.07.92
03.07.92
02.08.92
29.08.92
04.09.92
28.09.92
11.11.92
20.12.92
02.01.93
13.02.93

20.04.92
13.04.92
05.05.92
06.05.92
05.06.92
28.06.92
15.06.93
18.06.92
10.07.92
30.08.92
05.08.92
01.09.92
06.09.92
18.11.92
10.12.92
23.12.92
31.01.93
15.02.93

25
0,5
5
0,3
7
15
0,2
0,4
2,5
28
0,6
0,8
1
22
13
0,2
9
1

50
0,5
5
0,3
7
15
0,2
0,4
5
35
0,6
0,4
1
22
13
0,2
2
0,4

faulty/defective requirement
coding fault (loop)
module specification
wrong path requirement
interface between modules
missing functionality
missing initialisation
consecutive fault by fault correction
wrong modularisation
performance too low
previous fault correction
wrong data type used
algorithmic fault
requirement misunderstood
requirement wrong
required data not provided
coding bug
missing initialisation

....

....

observed period: 343 days

© Prof. Dr. Liggesmeyer, 56Software Quality Assurance

Case Study

The average MTTF is selected to measure reliability
One receives

MTTF = 343 days / 17 = 20,2 days

The average correction costs are used additionally
The average fault correction costs 8,8 Man days

© Prof. Dr. Liggesmeyer, 57Software Quality Assurance

Case Study

The faults have different causes which can be attributed to different
phases

Definition phase (5 faults): 1, 6, 10, 14, 15
Average costs: 27 MD
Total costs: 135 MD
Design phase (3 faults): 3, 5, 9
Average costs: 5,7 MD
Total costs: 17 MD
Implementation phase (10 faults): 2, 4, 7, 8, 11, 12, 13, 16, 17, 18
Average costs: 0,6 MD
Total costs: 6 MD

Costs reduction is achieved best by improvements in the definition
phase, as here the major part of the correction costs is caused,
although more faults are created in the implementation phase

© Prof. Dr. Liggesmeyer, 58Software Quality Assurance

Case Study

A reduction of the number of faults is achieved best by improvements
in the implementation or unit test phase

⇒ Application of corresponding techniques and tools
⇒SA, OOA, IM, RT, reviews, ...
⇒Structured programming, code generation, systematic testing, ...

Further observation of the measures in order to control effects

© Prof. Dr. Liggesmeyer, 59Software Quality Assurance

Literature

Halstead M.H., Elements of Software Science, New York: North-
Holland 1977
Zuse H., Software Complexity - Measures and Methods, Berlin, New
York: De Gruyter 1991

