
© Prof. Dr. Liggesmeyer, 1Software Quality Assurance

Data Flow Anomaly Analysis

© Prof. Dr. Liggesmeyer, 2Software Quality Assurance

Contents

Data flows and data flow anomalies
State machine for data flow anomaly analysis
Example without loops
Example with loops

© Prof. Dr. Liggesmeyer, 3Software Quality Assurance

Data Flows and Data Flow Anomalies

The data flow anomaly analysis guarantees the identification of certain
faults (so-called data flow anomalies)
The data flow w.r.t. to a certain variable on a particular execution path
can be described by its sequence of definitions, references (p-uses
and c-uses) and undefinitions (see data flow testing)
Rules for data flows

A value must not be assigned twice to a variable (dd-anomaly)
An undefined variable must not be referenced (ur-anomaly)
The value of a variable must not be deleted directly after the value has
been assigned (du-anomaly)

These data flow anomalies can be detected by static analysis

© Prof. Dr. Liggesmeyer, 4Software Quality Assurance

Data Flows and Data Flow Anomalies

x is defined: d (defined)
The variable x is assigned a value (e.g. x = 5;)

x is referenced: r (referenced)
The value of the variable x is read in a computation or in a decision, i.e.,
the value of x does not change (e.g. y = x + 1; or if (x > 0) ...)

x is undefined: u (undefined)
The value of the variable x is deleted (e.g., deletion of local variables
within a function or procedure at its termination). At program start all
variables are undefined

x is not used: e (empty)
The instruction of the node under consideration does not influence the
variable x. x is not defined, referenced or undefined

© Prof. Dr. Liggesmeyer, 5Software Quality Assurance

Data Flows and Data Flow Anomalies

Let us consider the two following data flows w.r.t. a variable (u:
undefinition, d: definition, r: reference)

1: u r d r u
2: u d d r d u

Sequence 1 begins with the pattern ur. The variable has a random
value at the time of the reference, as it was not defined before. There
is a data flow anomaly of the type ur; the reference of a variable with
undefined, random value
Sequence 2 contains two successive variable definitions. The first
definition has no effect, as the value is always overwritten by the
second definition. The data flow anomaly is of the type dd
Sequence 2 ends with a definition followed by an undefinition. The
value assigned by the definition is not used, as it is immediately
deleted afterwards. This data flow anomaly is of the type du

© Prof. Dr. Liggesmeyer, 6Software Quality Assurance

State Machine for Data Flow Anomaly Analysis

If the state data flow anomaly is reached or at the end of a data flow
anomaly analysis the state undefined is not reached, a data flow
anomaly is detected. The state machine defines a regular grammar.
Such grammars are a standard case for compiler construction. In
compilers they serve as a basis for the lexical analysis. Thus, data flow
analysis can be integrated into compilers (which is the case in some
compilers you should check whether your compiler can do it)

d (dd-anomaly)

u (du-anomaly)

r (ur-anomaly)

u

u

u

d

d

r
rdata flow

anomaly defined referenced

start undefined

(D) (R)

(S) (U)

© Prof. Dr. Liggesmeyer, 7Software Quality Assurance

Example without Loops

The operation MinMax gets two numbers via an interface which are to be
returned ordered according to size

void MinMax (int& Min, int& Max)
{

int Help;

if (Min > Max)
{

Max = Help;
Max = Min;
Help = Min;

}
end MinMax;

}

© Prof. Dr. Liggesmeyer, 8Software Quality Assurance

Example without Loops

Assignment of the data flow attributes w.r.t. the variables to the nodes
of the control flow graph

u – deletion of a value (undefine)
d – value assignment (define)
r – reading a value (reference)

Analysis of the data flows for the variables on the paths of the control
flow graph

© Prof. Dr. Liggesmeyer, 9Software Quality Assurance

Example without Loops

Control flow graph
of MinMax nstart

nin

n1

n2

n3

n4

nout

nfinal

Import of Min and Max

if (Min > Max)

Max = Help;

Max = Min;

Help= Min;

Export of Min and Max

d (Min), d (Max)

r (Min), r (Max)

r (Help), d (Max)

r (Min), d (Max)

r (Min), d (Help)

r (Min), r (Max)

u (Min), u (Max), u (Help)

u (Min), u (Max), u (Help)

{

}

© Prof. Dr. Liggesmeyer, 10Software Quality Assurance

Example without Loops

Data flows of MinMax

uuudru
Help

urrduurddrdu
Max

urrduurrrrdu
Min

nfinalnoutn1ninnstartnfinalnoutn4n3n2n1ninnstart

Path

Variable

u – undefine d – define r - reference

© Prof. Dr. Liggesmeyer, 11Software Quality Assurance

Example without Loops

The corrected version of the operation reads as follows

void MinMax (int& Min, int& Max)
{

int Help;
if (Min > Max)
{

Help = Min;
Min = Max;
Max = Help;

}
END MinMax;

}

© Prof. Dr. Liggesmeyer, 12Software Quality Assurance

Example without Loops

nstart

nin

n1

n2

n3

n4

nout

nfinal

Import of Min and Max

if (Min > Max)

Help = Min;

Min = Max;

Max = Help;

Export of Min and Max

d (Min), d (Max)

r (Min), r (Max)

r (Min), d (Help)

r (Max), d (Min)

r (Help), d (Max)

r (Min), r (Max)

u (Min), u (Max), u (Help)

u (Min), u (Max), u (Help)

{

}

© Prof. Dr. Liggesmeyer, 13Software Quality Assurance

Example without Loops

uuurduHelp

urrduurdrrduMax

urrduurdrrduMin

nfinalnoutn1ninnstartnfinalnoutn4n3n2n1ninnstart

Path

Variable

u – undefine d – define r - reference

© Prof. Dr. Liggesmeyer, 14Software Quality Assurance

Example with Loops

Assumption: Data flow anomaly analysis must be done for all paths
if the number of paths is to large, data flow anomaly analysis may not
be feasible (reason: loops, see path testing)
Fortunately this assumption is not correct

Concerning the data flow anomaly analysis it is sufficient to analyze the
paths up to the first iteration of loops (the second execution of the loop
body)
If no data flow anomalies occurred until then, it is ensured that also on the
paths with a higher number of loop iterations no anomalies will occur

© Prof. Dr. Liggesmeyer, 15Software Quality Assurance

Example with Loops

An operation uses Newtonian iteration as an approximation procedure
in order to determine the square root

The operation should determine the square root for the non-negative
inputs
For negative inputs the value 0.0 is to be returned

Due to the approximation procedure it is difficult to give an estimation
for the maximum number of iterations. This may cause an infinite
number of paths (remark: If the loop is well-designed it should
terminate for every input, so the number of iteration will be finite; but in
this special case, this is hard to prove.)

© Prof. Dr. Liggesmeyer, 16Software Quality Assurance

Example with Loops

double Sqrt(double X)
{

double returnValue;
if (X > 0.0)
{ double W;

while (ABS(W*W-X) > 0.01)
{

W = W - ((W*W-X) / (2.0 * W));
}
returnValue = W;

}
else
{ returnValue = 0.0;
}
return (returnValue);

}

© Prof. Dr. Liggesmeyer, 17Software Quality Assurance

Example with Loops

nstart

nin

if (X > 0.0) ...

while (ABS (W * W) – X) > 0.01 ...

W = W – ((W * W – X) / (2.0 * W))

returnValue = W

nout

nfinal

else returnValue = 0.0

return (returnValue)

u (X), u (W), u (returnValue)

d (X)

r (X)

r (X), r (W)

r (X), r (W), d (W)

r (W), d (returnValue)

d (returnValue)

r (returnValue)

u (X), u (W), u (returnValue)

© Prof. Dr. Liggesmeyer, 18Software Quality Assurance

Example with Loops

The analysis of the path which is passed through for non-positive input values
is relatively simple

X: udru
W: uu
returnValue: udru

None of these data flows contains anomalies
For positive inputs the loop is executed. The data flow for the variable X begins
with the sub-sequence udrr up to the loop decision. If the loop is not entered,
the sub-sequence u follows directly. If the loop is entered, the sub-sequence rr
edges itself in. This sub-sequence repeats with every further loop execution.
Thus, the data flows on these paths can be given in complete form. The data
flow for the variable X is: udrr(rr)nu, with n >= 0. Value n represents the
number of loop executions. For the variables W and returnValue also complete
expressions for the data flows are received similarly
X: udrr(rr)nu, n>=0
W: ur(rdr)nru, n >=0
returnValue: udru

© Prof. Dr. Liggesmeyer, 19Software Quality Assurance

Example with Loops

Question: Which values n have to be considered w.r.t. data flow
anomaly analysis

Certainly the case n=0 has to considered, as a new sequence results due
to the disappearance of the bracketed sub-sequence
The case n=1 also has to be considered, as two new sub-sequence
emerge at the beginning of the bracketed expression and at its end
Furthermore the case n=2 is to be considered. For clarification the
sequence ... r(drd)nr ... should be looked at which for n=0 and n=1 has no
data flow anomalies, but for n=2 (... rdrddrdr ...) shows a dd-anomaly
For greater values n no potential new data flow anomalies result. If no
data flow anomaly on the paths up to the second loop execution has
occurred yet, none will occur actually. The infinite number of paths has no
influence on this

© Prof. Dr. Liggesmeyer, 20Software Quality Assurance

Example with Loops

The operation sqrt for the variable W shows a data flow anomaly. The
data flow ur(rdr)nru begins with a ur-anomaly. The value of the variable
W is not initialised yet at the time of the first reading access. However,
the operation works correctly for random positive initial values of W, so
that dynamic testing does not detect the fault reliably. For negative
initial values of W the negative root is determined. If W by accident is
initially equal zero, the program crashes, as a divide by zero occurs.
While by dynamic testing this fault can be detected only unreliably, it is
identifiable by data flow anomaly analysis reliably and at very low costs

© Prof. Dr. Liggesmeyer, 21Software Quality Assurance

Example with Loops

nstart

nin

if (X > 0.0) ...

while (ABS (W * W) – X) > 0.01 ...

W = W – ((W * W – X) / (2.0 * W))

returnValue = W

nout

nfinal

else returnValue = 0.0

return (returnValue)

u (X), u (W), u (returnValue)

d (X)

r (X)

r (X), r (W)

r (X), r (W), d (W)

r (W), d (returnValue)

d (returnValue)

r (returnValue)

u (X), u (W), u (returnValue)

W = 1.0 d (W)

