
© Prof. Dr. Liggesmeyer, 1Software Quality Assurance

Formal Verification

© Prof. Dr. Liggesmeyer, 2Software Quality Assurance

Contents

Symbolic Test
Formal verification

Inductive assertion method according to Floyd
The Hoare-Calculus
Total Correctness
Handling of Structured Data Types
Algebraic Specifications

© Prof. Dr. Liggesmeyer, 3Software Quality Assurance

Symbolic Test
Properties

The unit under test is executed with symbolic values by an interpreter
The symbolic test runs in an artificial environment
The symbolic test gains complete information about the correctness for
whole input areas
The symbolic test can sometimes prove the correctness
The symbolic test takes a position between the dynamic test, the
statistical analysis and the verification

© Prof. Dr. Liggesmeyer, 4Software Quality Assurance

Symbolic Test

Symbolic input

specification

image of the
specification

evaluate
outputs

tester

Completeness
(execution of
all paths)

n1

nstart

n3

n4

n5

n2

nfinal

© Prof. Dr. Liggesmeyer, 5Software Quality Assurance

Symbolic Test
Symbolic Execution of MinMax

Variable
name
Symbolic
value

Variable
name
Symbolic
value

Variable
name
Symbolic
value

branching of symbolic execution

int Help;

Help = Min;

Min = Max;

Max = Help;

Min Max Help Min Max Help

Min Max Help

MIN MAX

© Prof. Dr. Liggesmeyer, 6Software Quality Assurance

Symbolic Test
Symbolic Execution of MinMax

At the beginning assignment of the symbolic values to Min and Max by
the interpreter

Min = MIN ∧ Max = MAX
Specification of the procedure: At the end of the procedure the smaller
value should be in Min and the greater value in Max on the side
condition that the values are permuted at most, but not modified
The symbolic results of the two program paths are

1. MIN > MAX ∧ Min = MAX ∧ Max = MIN ∧ Help = MIN
From this follows

Max > Min ∧ Min = MAX ∧ Max = MIN
2. MIN ≤ MAX ∧ Min = MIN ∧ Max = MAX
Substitution results in

Min ≤ Max ∧ Min = MIN ∧ Max = MAX
These two terms describe the desired behavior

© Prof. Dr. Liggesmeyer, 7Software Quality Assurance

Symbolic Test
Problems

As symbolic results are always assigned to a program path, for
programs with an infinite number of paths also the number of symbolic
results is infinite
Problems caused by the data structures available in modern
programming languages, as arrays or pointers

If, e.g., an array is accessed during the symbolic execution often the array
index is a symbolic term so that the number of possibilities to be
considered increases very fast

© Prof. Dr. Liggesmeyer, 8Software Quality Assurance

Symbolic Test
Problems

If a program uses arrays during the symbolic execution normally the
array index is a symbolic value so that in general it cannot be decided
which concrete array element has to be accessed

VAR Array : ARRAY [1..10] OF CARDINAL;
FOR i:= 1 TO 10 DO
Array [i] := 0

END;
REPEAT

ReadCard (i)
UNTIL ((i>=1) AND (i<=10));
Array [i] := 10;

© Prof. Dr. Liggesmeyer, 9Software Quality Assurance

Symbolic Test
Problems

An array with ten elements of the type CARDINAL is initialized at first
by assigning the value zero to all elements. Subsequently the variable i
gets a value by keyboard entry, which is used as the index to an array
element to which the value ten is assigned
Which of the array elements gets the value ten is determined by the
concrete value i. A symbolic test tool is not able to decide this on the
basis of the symbolic value

© Prof. Dr. Liggesmeyer, 10Software Quality Assurance

Symbolic Test
Problems

Floating point variables also cause problems due to the discrepancy
between the discrete arithmetic of a computer and the continuous
character of real numbers
One usually requires that the symbolic execution followed by the
substitution of the symbolic values by real input values leads to the
same result as the choice of concrete inputs followed by a
conventional program execution
This rule is no longer valid if floating point variables are used. The
symbolic execution cannot consider the discrete character floating
point numbers have in the computer arithmetic and consequently treats
them as value-continuous

© Prof. Dr. Liggesmeyer, 11Software Quality Assurance

Symbolic Test
Problems

In the symbolic execution no approximation errors occur. An insertion
of concrete values in the symbolic results produce absolute exact
values
If a program is executed conventionally with concrete inputs
approximations occur due to the computational accuracy associated
with floating point values

© Prof. Dr. Liggesmeyer, 12Software Quality Assurance

Symbolic Test
Problems

,
Symbolic
execution

Substitution
of
parameters

Conventional
execution

Substitution
of parameters
into symbolic
results

© Prof. Dr. Liggesmeyer, 13Software Quality Assurance

Formal Verification

The verification demonstrates consistency between specification and
implementation using proof techniques
A formal specification is required
The verification can prove the correctness

© Prof. Dr. Liggesmeyer, 14Software Quality Assurance

specification

verification
tool

Formal Verification

© Prof. Dr. Liggesmeyer, 15Software Quality Assurance

Formal Verification
Example

Verification of a program flow chart with the inductive assertion method
according to Floyd

Quotient = 0

Start

Quotient = Quotient + 1

Rest = Rest - Divisor

Rest = Dividend

StopRest < Divisor
True

False

Dividend ≥ 0 ∧ Divisor > 0 (precondition)

Dividend ≥ 0 ∧ Divisor > 0 ∧ Quotient = 0

Dividend ≥ 0 ∧ Divisor > 0 ∧ Quotient = 0 ∧ Rest = Dividend ∧ Rest ≥ 0
Dividend = Rest + Quotient * Divisor ∧ Rest ≥ 0 (loop invariant)

∧ Dividend ≥ 0 ∧ Divisor > 0

Dividend = Rest + Quotient * Divisor ∧ Rest ≥ 0 ∧ Dividend ≥ 0
∧ Divisor > 0 ∧ Rest ≥ Divisor

Dividend = Rest + Divisor + Quotient * Divisor ∧ Rest + Divisor ≥ Divisor
∧ Dividend ≥ 0 ∧ Divisor > 0 ⇔ Dividend = Rest + (Quotient + 1) * Divisor
∧ Rest ≥ 0 ∧ Dividend ≥ 0 ∧ Divisor > 0

Dividend = Rest + (Quotient – 1 + 1) * Divisor ∧ Rest ≥ 0 ∧ Dividend ≥ 0
∧ Divisor > 0 ⇔ Dividend = Rest + Quotient * Divisor ∧ Rest ≥ 0
∧ Dividend ≥ 0 ∧ Divisor > 0

Dividend = Rest + Quotient * Divisor
∧ 0 < Rest < Divisor ∧ Dividend > 0
∧ Divisor > 0 (postcondition)

© Prof. Dr. Liggesmeyer, 16Software Quality Assurance

Formal Verification
The Hoare-Calculus

Basis
A program is a formal description of behavior. It contains all the
information necessary to determine the program properties and the effects
of a program execution
It is possible to determine the behavior of a program by application of
inference rules
A formal description of the semantics is necessary

If S is a program or a part of a program and P is the precondition
before the execution of S and if after the execution of S the
postcondition Q is valid on condition that S terminates, one writes

P { S } Q

© Prof. Dr. Liggesmeyer, 17Software Quality Assurance

Formal Verification
The Hoare-Calculus

P is the precondition of S w.r.t. Q
If S is a complete program, P is also referred to as the entry assertion and
Q as the exit assertion
If no precondition exists one writes TRUE { S } Q

The effect of an assertion x := f might be described as follows
Pf

x{ x := f } P
Pf

x emerges from P by substitution of all occurrences of x with f. The
assertion P which should be true after the execution of the assignment
had to be fulfilled before the execution for the variable on the left hand
side of the assertion

© Prof. Dr. Liggesmeyer, 18Software Quality Assurance

Formal Verification
The Hoare-Calculus: Example

Pf
x { x := f } x > 0

If after the execution of the assignment x > 0 is to be valid before the
execution of the assignment f > 0 had to be fulfilled. This is the
precondition Pf

x which is generated by simple substitution of all
variables x of the postcondition by variables f

f > 0 { x: = f} x > 0

In general the semantics of the assignment can be described as axiom
by

A0. Pf
x { x := f} P

Hoare gives many additional rules in order to be able to deal with all
constructs of a programming language

© Prof. Dr. Liggesmeyer, 19Software Quality Assurance

Formal Verification
The Hoare-Calculus: Inference Rules

P {S} Q, Q ⊃ R
P {S} R

A1:

A2:

A3:

A4:

Q {S} R, P ⊃ Q
P {S} R

P {S1} Q, Q {S2} R
P {S1; S2} R

P ∧ B {S} P
P {WHILE B DO S END} P ∧ ¬ B

© Prof. Dr. Liggesmeyer, 20Software Quality Assurance

Formal Verification
The Hoare-Calculus: Inference Rules

The left column numbers the steps of the proof. The right column
contains the used rule and if necessary the numbers of the used steps
of the proof
The specification of the program consists of an entry assertion and an
exit assertion
Since there is no specific precondition, the boolean constant TRUE is
used
The postcondition is Dividend = Rest + Quotient * Divisor ∧ ¬ (Divisor ≤
Rest)

© Prof. Dr. Liggesmeyer, 21Software Quality Assurance

Formal Verification
The Hoare-Calculus

No. precondition statement postcondition axiom
1 TRUE ⇒ Dividend = Dividend + 0 * Divisor lemma
2 Dividend = Dividend + 0 * Divisor {Rest = Dividend} Dividend = Rest + 0 * Divisor A0
3 Dividend = Rest + 0 * Divisor {Quotient = 0} Dividend = Rest + Quotient * Divisor A0
4 TRUE {Rest = Dividend} Dividend = Rest + 0 * Divisor A2 (1,2)
5 TRUE {Rest = Dividend, Dividend = Rest + Quotient * Divisor A3 (4,3)

Quotient = 0}
6 Dividend = Rest+Quotient*Divisor ∧ Divisor ≤ Rest ⇒ Dividend = (Rest-Divisor) +(Quotient+1)*Divisor lemma
7 Dividend = (Rest - Divisor) {Rest := Rest - Divisor} Dividend = Rest + (Quotient + 1) * Divisor A0

+ (Quotient + 1) * Divisor
8 Dividend = Rest {Quotient := Quotient + 1} Dividend = Rest + Quotient * Divisor A0

+ (Quotient + 1) * Divisor
9 Dividend = (Rest - Divisor) {Rest := Rest - Divisor; Dividend = Rest + Quotient * Divisor A3 (7,8)

+ (Quotient + 1) * Divisor Quotient := Quotient + 1}
10 Dividend = Rest + Quotient {Rest := Rest - Divisor; Dividend = Rest + Quotient * Divisor A2 (6,9)

* Divisor ∧ Divisor ≤ Rest Quotient := Quotient + 1}

11 Dividend = Rest + Quotient {WHILE Divisor ≤ Rest DO ¬ (Divisor ≤ Rest) ∧ Dividend A4 (10)
* Divisor Rest := Rest - Divisor; = Rest + Quotient * Divisor

Quotient := Quotient + 1 END}
12 TRUE {Rest = Dividend; ¬ (Divisor ≤ Rest) A3 (5,11)

Quotient = 0; ∧ Dividend = Rest + Quotient * Divisor
WHILE Divisor ≤ Rest DO
Rest := Rest - Divisor;
Quotient := Quotient + 1 END}

© Prof. Dr. Liggesmeyer, 22Software Quality Assurance

Formal Verification
Total Correctness

Termination of an arbitrary algorithm is not decidable. However, it
might be proven for many programs
A usual method is the use of well-sorted sets. Every not empty subset
of a well-sorted set has a smallest element. Thus no infinitely
decreasing sequences are possible
A termination function is assigned to loops, which maps loop traversals
into a well-sorted set W
If it can be shown that the W-function after every loop iteration delivers
a lower value than before, the values of the W-function form a strictly
monotonic decreasing sequence. As in a well-sorted set a smallest
element exists, on certain conditions no infinitely decreasing
sequences are possible. From this it follows that the program
terminates

© Prof. Dr. Liggesmeyer, 23Software Quality Assurance

Formal Verification
Total Correctness

A special case of the required W-function is the so-called termination
function t which maps the values of the program variables to the set of
nonnegative integers
Example

In the division program all involved variables are Integers
Divisor > 0 => Divisor ≥ 1
Dividend ≥ 0 => Rest ≥ 0
In every loop execution Rest is reduced by Divisor, but at the same time
Rest ≥ 0; from this follows: the loop terminates; the termination function is
t = Rest

© Prof. Dr. Liggesmeyer, 24Software Quality Assurance

Formal Verification
Total Correctness

The loop rule of the Hoare-calculus might be adapted accordingly

z has to be constant for the considered program section (the loop):
Before the execution of the loop body S, the value of t is z (t = z), and
after the execution t< z, i.e. the value of the termination function
becomes lower
From the validity of the loop invariant P it has to follow that also
t ≥ 0 is valid

Example division routine: z = Dividend, t = Rest

P ∧ B {S} P, P ∧ B ∧ t = z {S} t < z, P ⇒ t ≥ 0
P {WHILE B DO S END} P ∧ ¬ B

A4*.

© Prof. Dr. Liggesmeyer, 25Software Quality Assurance

Formal Verification
Handling of Structured Data Types: Quantifiers

Until now, it has been possible to write all assertions in simple logic.
The cause is the exclusive use of simple data types
For this example this does not work anymore

a[i] = a[i – 1] + a[i – 2]

while (i ≤ max)

a[1] = 1

a[2] = 1

i = 3

i = i + 1

© Prof. Dr. Liggesmeyer, 26Software Quality Assurance

Formal Verification
Handling of Structured Data Types: Quantifiers

The routine should assign the following values to an array a with the
index area 1 to max, with max >= 2

a(1) and a(2) get the value 1. All array elements the index of which is
greater than two are assigned the sum of the values of the two preceding
array elements (i.e. a(3) = 2, a(4) = 3, a(5) = 5, etc.)

In order to describe this, we need quantifiers
For all array elements ...
There is at least one array element ...

A boolean algebra enhanced by quantifiers is called first order
predicate calculus

© Prof. Dr. Liggesmeyer, 27Software Quality Assurance

Formal Verification
The All-Quantifier

An array should be sorted in ascending order between the indices 0
and n

All j: 0 ≤ j < n: a[j] ≤ a[j+1]

]1[][
0|

+≤∀
<≤

jaja
njj

]1[][
0|

+≤
<≤

∧ jaja
njj

© Prof. Dr. Liggesmeyer, 28Software Quality Assurance

Formal Verification
The Existence Quantifier

An array has at least one positive element between the indices 0 and n

Ex j: 0 ≤ j ≤ n: a[j] > 0

0][
0|

>∃
≤≤

ja
njj

0][
0|

<
≤≤

∨ ja
njj

© Prof. Dr. Liggesmeyer, 29Software Quality Assurance

Formal Verification
Handling of Structured Data Types: Quantifiers

(All j: 3 ≤ j < i: a[j] = a[j-1] + a[j-2])
i = max + 1, a[1] = 1, a[2] = 1

⇒ a[1] = 1, a[2] = 1
(All j: 3 ≤ j ≤ max: a[j] = a[j-1] + a[j-2])

(All j: 3 ≤ j ≤ i: a[j] = a[j-1] + a[j-2])
a[1] = 1, a[2] = 1, i ≤ max

a[i] = a[i-1] + a[i-2]

P and i ≤ max
while (i ≤ max) loop

a[1] = 1, max ≥ 2

a[1] = 1

max ≥ 2

a[1] = 1, a[2] = 1, max ≥ 2

a[2] = 1

i = 3, max ≥ 2
Invariant P: a[1] = 1, a[2] = 1,
(All j: 3 ≤ j < i: a[j] = a[j-1] + a[j-2])

i = 3

i = i + 1

(All j: 3 ≤j<i: a[j] = a[j-1] + a[j-2])
a[1]=1, a[2]=1,

i ≤ max + 1

© Prof. Dr. Liggesmeyer, 30Software Quality Assurance

Formal Verification
Algebraic Specifications

An appropriate form of specification for data abstractions is the
algebraic specification
Data abstraction

data structure (internal memory)
access operations to this memory

The only access to the memory is provided by the access operations
belonging to the data abstraction
The specification describes the data objects and the effects of the
operations

© Prof. Dr. Liggesmeyer, 31Software Quality Assurance

Formal Verification
Algebraic Specifications: Example

Q is a variable of the type queue for integers and i is an integer
Push (Q, i) adds i to the end of the queue of Q; return type queue
Pop (Q) deletes an element from the head of the queue; return type queue
Initial (Q) determines if the queue is empty. The result is a boolean value
Length (Q) provides the actual number of elements in queue Q; return
type integer, nonnegative

© Prof. Dr. Liggesmeyer, 32Software Quality Assurance

Formal Verification
Algebraic Specifications: Example

Possible axioms in the specification are:
pop (push (Q, i)) = IF Initial (Q) THEN Q ELSE push (pop (Q), i) END;
IF Initial(Q) THEN Length (Q) = 0 ELSE Length (Q) > 0
Length (push (Q, i)) = Length (Q) + 1
Length (pop (Q)) = IF Initial(Q) THEN error ELSE Length (Q) – 1
Initial(Q) = (Length(Q) = 0)
...

© Prof. Dr. Liggesmeyer, 33Software Quality Assurance

Formal Verification
Algebraic Specifications: Example

1. pop (push (Q, i)) = IF Initial (Q) THEN Q ELSE push (pop (Q), i)
2. IF Initial(Q) THEN Length (Q) = 0 ELSE Length (Q) > 0
3. Length (push (Q, i)) = Length (Q) + 1
4. Length (pop (Q)) = IF Initial(Q) THEN error ELSE Length (Q) – 1
5. Initial(Q) = (Length(Q) = 0)

Substitution of Q by push (Q,i) in 4
Length (pop (push (Q, i))) = IF Initial(push (Q, i)) THEN error ELSE
Length (push (Q, i)) – 1

Applications of 5
Length (pop (push (Q, i))) = IF (Length (push (Q, i)) = 0) THEN error ELSE
Length (push (Q, i)) – 1

© Prof. Dr. Liggesmeyer, 34Software Quality Assurance

Formal Verification
Algebraic Specifications: Example

Application of 3
Length (pop (push (Q, i))) = IF ((Length (Q) +1) = 0) THEN error ELSE
Length (push (Q, i)) – 1 = Length (push (Q,i)) – 1

Application of 3
Length (pop (push (Q, i))) = Length (Q) + 1 – 1 = Length (Q)

Application of 1
Length (pop (push (Q, i))) = IF Initial (Q) THEN Length (Q) ELSE Length
(push (pop (Q), i)) = Length (Q)

Application of 3
IF Initial (Q) THEN Length (Q) ELSE Length (pop (Q)) + 1 = Length (Q)

logically false

© Prof. Dr. Liggesmeyer, 35Software Quality Assurance

Formal Verification
Algebraic Specifications: Example

Application of 4
IF Initial (Q) THEN Length (Q) ELSE (IF Initial(Q) THEN error ELSE
(Length (Q) – 1) + 1 = Length (Q)

⇒

IF Initial (Q) THEN Length (Q) ELSE Length (Q) – 1) + 1 = Length (Q)
⇒

IF Initial (Q) THEN Length (Q) ELSE Length (Q) = Length (Q)
⇒

Length (Q) = Length (Q) (true assertion/statement)

logically false

© Prof. Dr. Liggesmeyer, 36Software Quality Assurance

Formal Verification
Literature

Burch J.R., Clarke E.M., Long D.E., McMillan K.L., Dill D.L., Symbolic Model Checking
for Sequential Circuit Verification, in: IEEE Transactions on Computers, Vol. 13, No. 4,
April 1994, pp. 401-424
Clarke E.M., Emerson E.A., Sistla A.P., Automatic Verification of Finite state Concurrent
Systems using Temporal Logic Specifications, in: ACM Transactions on Programming
Languages and Systems, Vol. 8, No. 2, April 1986, pp. 244-263
Floyd R.W., Assigning meanings to Programs, in: Proceedings of the American
Mathematical Society Symposium in Applied Mathematics, Vol. 19, 1967, pp. 19-32
Hoare C.A.R., Proof of a Program: FIND, in: Communications of the ACM, Vol. 14, No.
1, January 1971, pp. 39-45
Howden W.E., An evaluation of the effectiveness of symbolic testing, in: Software-
Practice and Experience, Vol. 8, No. 4, July/August 1978, pp. 381-397
Logrippo L., Melanchuk T., Du Wors R.J., The Algebraic Specification Language
LOTOS: An Industrial Experience, in: Proceedings of the ACM SIGSOFT International
Workshop on Formal Methods in Software Development, Napa, May 1990, Software
Engineering Notes, Vol. 15, No. 4, September 1990, pp. 59-66

