
© Prof. Dr. Liggesmeyer, 1Software Quality Assurance

Conclusions

© Prof. Dr. Liggesmeyer, 2Software Quality Assurance

Automation of Testing
Minimum Requirements

Necessary, minimum requirements of testing
A simple practical testing strategy
Generation of a testing strategy in practice
Summary
Literature

© Prof. Dr. Liggesmeyer, 3Software Quality Assurance

Necessary, Minimum Requirements of Dynamic Testing

Absolutely necessary according to all authoritative standards:
Function-oriented test planning for all test phases

Reproducibility of test results => automatic regression test after
software modification
Large consensus:

Supplementary structure-oriented coverage (minimum: branch coverage
test)
In critical application areas – e.g., avionics – more thorough structure-
oriented tests are explicitly required by the standards
Execution preferably during the first test phase after finishing the code
(module test)
Additional performance and stress testing, especially in technical
application areas

© Prof. Dr. Liggesmeyer, 4Software Quality Assurance

Module Test
Function-oriented module test using a branch coverage testing tool

- Function-oriented test case generation (e.g. generation of functional
equivalence classes)

- Preparation – viz. instrumentation – of the modules to be tested for
controlling the branch coverage achieved

- Complete execution of the function-oriented testing
- Controlling of the branch coverage achieved in this way (according

to experience, approx. 70% - 80%)
Structure-oriented module test using the branch coverage testing tool

- Cause analysis for the non-execution of branches
- Generation of test cases for the branches not yet executed

Integration and System Test
Function-oriented test

A Simple, Practical, Dynamic Test Strategy

© Prof. Dr. Liggesmeyer, 5Software Quality Assurance

Software is nowadays often used in application areas in which
quantitative statements are common or necessary:

Contract design: “We stipulate that the system’s minimum availability
shall be 99.8%!“
Safety proof of a railway system at the Federal Railway Authority: “How
high is the remaining risk posed by software failures?“
Is the expected number of the remaining failures sufficiently low for the
release?
Is the probability adequately small that software failures in control units
will cause malfunctions of our luxury sedans?
We need a failure-free mission time of 4 weeks. Can this be attained?

Many enterprises have installed defined processes: The next step is
to quantitatively control these.

Measurement

© Prof. Dr. Liggesmeyer, 6Software Quality Assurance

First steps in measurement:
Measurement of the test coverage => integrated into dynamic test tools
Measurement of code features => separate measurement tools

Measurement

© Prof. Dr. Liggesmeyer, 7Software Quality Assurance

Using tools in support of …
… regression tests
… load and stress tests
… GUI tests

Extension of Tests

© Prof. Dr. Liggesmeyer, 8Software Quality Assurance

Prior to test execution:
Checking compliance with programming conventions => Tool
Data flow anomalies analysis => Tool / Compiler
Code Inspection / Review => WITHOUT Tool

Dynamic test
As described
Beforehand: Switching on the assurances
At the same time:

- Recording of the test cases (regression test) and
- recording of the coverage
- If applicable: load and stress tests / GUI test

Statistic Analyses

© Prof. Dr. Liggesmeyer, 9Software Quality Assurance

In Addition

If applicable: measurement of the achieved reliability (evaluation of
the test observations) => Tool
If applicable: monitoring of special requirements from the standards:
e.g., RTCA DO 178 B demands advanced dynamic tests (avionics)
If applicable: early tool-supported safety analysis (FMECA, RBD, FT)

© Prof. Dr. Liggesmeyer, 10Software Quality Assurance

Literature

/Liggesmeyer 02/: Liggesmeyer P., Software-Qualität, Heidelberg: Spektrum Akademischer Verlag 2002

