

Master Project XXX

TESTPLAN: Unit test

ID: Unittest 1.x.x

Version 1.x

Rev. x

Authors:

Date\Signature: ________________________________

Quality Assurer:

Date\Signature: ________________________________

Project manager:

Date\Signature: ________________________________

Head of project:

Date\Signature: ________________________________

http://www.dict.cc/englisch-deutsch/project.html
http://www.dict.cc/englisch-deutsch/manager.html

Document History

Version

No.
Date Authors

Revision Sheet

Review

No.
Date Reviewer Revision Description

Rev. 0 xx\06\2008 Creation of this unit test plan

Rev. 1 xx\06\2008 Addition of further chapters

Rev 2 xx\06\08

Refinement of the test objects, test

environment and test activities.

Checking and maintaining consistency

between architecture document and unit test

plan.

1 Introduction
The purpose of this document is to introduce the unit test plan of the Publication

Document Workflow Management System (PD WMS). The document

summarizes the test objects, the relevant characteristics to be tested, the test

strategy, the pass/fail criteria, the interrupt/continue criteria, the test environment

and resources.

1.1 Background and goals

The PD WMS of the Fraunhofer IESE consists of five sub-processes: Initial

approval, Writing Document, Quality approval, Pre-publish, and Publication and

Dissemination. Details about the sub-processes of the PD WMS can be found in

the Requirements Document of the Master project OSP07.

In order to make the system more usable for the employees of the Fraunhofer

IESE, the system should be integrated with the tools that are most commonly used

by the researchers at Fraunhofer IESE: Microsoft Office. Therefore, the PD

WMS should work under the Operating System Microsoft Windows and will be

integrated with Microsoft Outlook, as front end.

The goal of the unit test is to verify the functionality and completeness of each

component according to the corresponding Component Design Document [1.2 Nr.

3] and the Architectural Document. For each component test cases will be

designed using equivalence class and boundary values analysis as selection

criteria.

1.2 Referenced documents

Nr Name Version Document position

1 Requirements

Document of the

Master Project OPS07

1.0

~\Requirements_documentation\Requirements_Specifica

tion.doc

2 Architecture Document

of the Master Project

OPS07

1.0

~\Products\Architecture\ViewBasedArchitectureDocume

ntV_4.2.doc

3 Component Design

Documents
1.0

~\Products\Component_Design\…

4 Mastertestplan 1.0 ~\Products\Testing\Documents\Mastertestplan.doc

5 Testcases_1.x 1.0

6 Testscripts_1.x 1.0

7 Testpriority_1.x 1.0 ~\Products\Testing\Documents\ unitest\...

8 Mastertimeplan 1.0 ~\Products\Testing\Documents\Mastertimeplan.mpp

2 Test objects
The Architecture Document of the PD WMS [1.2 Nr. 2] defines 5 layers which

should be specified during the component design. These layers are: Office

application layer, Process execution layer, Business layer, Data layer and

Communication layer. At the moment, the following components have been

defined for each layer:

Layer Preliminary Component

Office application layer VOF Client Controller

VOF Client View

VOF Data Model

Process execution layer VOF Document Manager

VOD Document Builder

Outbox

Inbox

Business layer Service Manager

User Manager Service

VOF Publication Service

LIS Manipulation Service

Statistics Service

VOF Document Template Service

Template Service

Data layer VOF Document Template Access

Statistic Data Access

Document Template Access

LIS Data Access

User Data Access

Communication layer Discovery Manager

Node Manager

For each layer a Component Design Document [1.2 Nr. 3] will be created to

refine and to specify the corresponding components. The test objects will be the

components (units) defined in each Component Design Document [1.2 Nr. 3].

3 Test characteristics

 Completeness
The implemented components should be completed in compliance with the

specifications in the corresponding Component Design Document[1.2 Nr.3].

 Robustness
The components should be able to handle non expected behavior from calling

components like using the service of the called component not in the specified

way, with an appropriate exception handling.

 Maintainability

Although this characteristic is important for this kind of system, it is not

possible to test it in our scope, because there is no experience in testing this

kind of characteristics and there are not enough resources in our project for

this.

 Efficiency

According to the requirements of this project it is less important to test this

characteristic. And also no resources are available for this kind of tests.

4 Test strategy

4.1 Test approach

To test the completeness Black-Box tests have to be conducted.

According to the component design [1.2 Nr. 3], test cases should be generated for

the specified functionality of each component. The test cases will be designed

using equivalence partitioning combined with a boundary value analysis as

selection criteria. The goal is to cover all the equivalence partitions for each

component. Only if these components work properly, the system can provide its

desired functionality. Furthermore the integration of two or more units can only

start if the functionality of the components has been implemented and tested.

The Robustness will be tested by Black-box tests, according to the component

design [1.2 Nr. 3]. To test the robustness, negative test cases will be used, to

check the behavior of the component, regarding to irregular input combinations.

These points have to be considered and included in the equivalence partitions

from the completeness.

4.2 Test environment

The unit test cases should be designed and implemented by the developers using

C#Unit for the Office Application layer and JUnit 4.1 for the remaining layers.

The implementation plan has assigned one team of developers for each layer.

Because of resource constraints, the developers will design, implement and

execute the unit test. To assure that the “testers” are independent of the

developers, a team of developers should test the work of another team.

Layer Tester team

Office application layer Data layer

Process execution layer Business layer, Communication layer

Business layer 2 developers of the Process execution layer

Data layer Office application layer

Communication layer 2 developers of the Process execution layer

5 Pass \ Fail criteria

5.1 Pass criteria

 More than 90% of the unit test cases finished without a system crash.

 More than assumed 65% coding defects and no design defects should be

found.
1

5.2 Fail criteria

 Test case fails.

6 Interrupt \ continue criteria

6.1 Interrupt criteria

 Failure of one test case which block the continuity of the test sequence for one

component.

6.2 Continue criteria

 Problems have been fixed.

 Start at the beginning of the test scenario, to discover all eventual

dependencies of the former problem.

7 Result documents
 Unittestplan

 Equivalences classes

 Testcases

 Testprioritization

 Testreport

8 Test activities
The test activities need to assure the compliance of the defined goals including:

1. Preparing guidelines to design, implement and execute the test cases.

2. Providing instructions to the developers.

3. Designing the test cases.

4. Executing test cases.

5. Reporting and tracking bugs in Bugzilla.

6. Re-testing if necessary.

7. Reporting the final test results.

.

1
 See Mastertestplan [3]

9 Responsibilities

Test group Remit Name

Test management Creating the unit test plan

Test design
Specification of the unit test sequences, test

scenarios and test cases

Test implementation
Implementation of the unit test cases and the

test bed

Test execution
Performance of the unit test and informing the

bugs

Bug control
Report bugs and control the rework and

administration of the defect list (Bugzilla)

*See Section 4.2

10 Time plan

