
Software Quality Assurance

Data Flow Anomaly Analysis

Software Quality Assurance – Data Flow Anomaly Analysis

© Prof. Dr. Liggesmeyer

Contents

• Data flows and data flow anomalies

• State machine for data flow anomaly analysis

• Example without loops

• Example with loops

2

Software Quality Assurance – Data Flow Anomaly Analysis

© Prof. Dr. Liggesmeyer

Data Flows and Data Flow Anomalies

• The data flow anomaly analysis guarantees the identification of certain faults (so-

called data flow anomalies)

• The data flow w.r.t. to a certain variable on a particular execution path can be

described by its sequence of definitions, references (p-uses and c-uses) and

undefinitions (see data flow testing)

• Rules for data flows
• A value must not be assigned twice to a variable (dd-anomaly)

• An undefined variable must not be referenced (ur-anomaly)

• The value of a variable must not be deleted directly after the value has been assigned (du-anomaly)

• These data flow anomalies can be detected by static analysis

3

Software Quality Assurance – Data Flow Anomaly Analysis

© Prof. Dr. Liggesmeyer

Data Flows and Data Flow Anomalies

• x is defined: d (defined)
• The variable x is assigned a value (e.g. x = 5;)

• x is referenced: r (referenced)
• The value of the variable x is read in a computation or in a decision, i.e., the value of x does not

change (e.g. y = x + 1; or if (x > 0) ...)

• x is undefined: u (undefined)
• The value of the variable x is deleted (e.g., deletion of local variables within a function or procedure

at its termination). At program start all variables are undefined

• x is not used: e (empty)
• The instruction of the node under consideration does not influence the variable x. x is not defined,

referenced or undefined

4

Software Quality Assurance – Data Flow Anomaly Analysis

© Prof. Dr. Liggesmeyer

Data Flows and Data Flow Anomalies

• Let us consider the two following data flows w.r.t. a variable (u: undefinition, d:
definition, r: reference)
• 1: u r d r u

• 2: u d d r d u

• Sequence 1 begins with the pattern ur. The variable has a random value at the
time of the reference, as it was not defined before. There is a data flow anomaly
of the type ur; the reference of a variable with undefined, random value

• Sequence 2 contains two successive variable definitions. The first definition has
no effect, as the value is always overwritten by the second definition. The data
flow anomaly is of the type dd

• Sequence 2 ends with a definition followed by an undefinition. The value assigned
by the definition is not used, as it is immediately deleted afterwards. This data
flow anomaly is of the type du

5

Software Quality Assurance – Data Flow Anomaly Analysis

© Prof. Dr. Liggesmeyer

State Machine for Data Flow Anomaly

Analysis

• If the state data flow anomaly is reached or at the end of a data flow anomaly
analysis the state undefined is not reached, a data flow anomaly is detected. The
state machine defines a regular grammar. Such grammars are a standard case
for compiler construction. In compilers they serve as a basis for the lexical
analysis. Thus, data flow analysis can be integrated into compilers (which is the
case in some compilers  you should check whether your compiler can do it)

d (dd-anomaly)

u (du-anomaly)

r (ur-anomaly)

u

u

u

d

d

r
r

data flow

anomaly
defined referenced

start undefined

(D) (R)

(S) (U)

6

Software Quality Assurance – Data Flow Anomaly Analysis

© Prof. Dr. Liggesmeyer

Example without Loops

• The operation MinMax gets two numbers via an interface which are to be returned
ordered according to size

void MinMax (int& Min, int& Max)
{
 int Help;

 if (Min > Max)
 {
 Max = Help;
 Max = Min;
 Help = Min;
 }
 end MinMax;
}

7

Software Quality Assurance – Data Flow Anomaly Analysis

© Prof. Dr. Liggesmeyer

Example without Loops

• Assignment of the data flow attributes w.r.t. the variables to the nodes of the

control flow graph
• u – deletion of a value (undefine)

• d – value assignment (define)

• r – reading a value (reference)

• Analysis of the data flows for the variables on the paths of the control flow graph

8

Software Quality Assurance – Data Flow Anomaly Analysis

© Prof. Dr. Liggesmeyer

Example without Loops

• Control flow graph

of MinMax
nstart

nin

n1

n2

n3

n4

nout

nfinal

Import of Min and Max

if (Min > Max)

Max = Help;

Max = Min;

Help= Min;

Export of Min and Max

d (Min), d (Max)

r (Min), r (Max)

r (Help), d (Max)

r (Min), d (Max)

r (Min), d (Help)

r (Min), r (Max)

u (Min), u (Max), u (Help)

u (Min), u (Max), u (Help)

{

}

9

Software Quality Assurance – Data Flow Anomaly Analysis

© Prof. Dr. Liggesmeyer

Example without Loops

• Data flows of MinMax

u u u d r u
Help

u r r d u u r d d r d u
Max

u r r d u u r r r r d u
Min

nfinal nout n1 nin nstart nfinal nout n4 n3 n2 n1 nin nstart

 Path

Variable

u – undefine d – define r - reference

10

Software Quality Assurance – Data Flow Anomaly Analysis

© Prof. Dr. Liggesmeyer

Example without Loops

• The corrected version of the operation reads as follows

void MinMax (int& Min, int& Max)

{

 int Help;

 if (Min > Max)

 {

 Help = Min;

 Min = Max;

 Max = Help;

 }

 END MinMax;

}

11

Software Quality Assurance – Data Flow Anomaly Analysis

© Prof. Dr. Liggesmeyer

Example without Loops

nstart

nin

n1

n2

n3

n4

nout

nfinal

Import of Min and Max

if (Min > Max)

Help = Min;

Min = Max;

Max = Help;

Export of Min and Max

d (Min), d (Max)

r (Min), r (Max)

r (Min), d (Help)

r (Max), d (Min)

r (Help), d (Max)

r (Min), r (Max)

u (Min), u (Max), u (Help)

u (Min), u (Max), u (Help)

{

}

12

Software Quality Assurance – Data Flow Anomaly Analysis

© Prof. Dr. Liggesmeyer

Example without Loops

u u u r d u
Help

u r r d u u r d r r d u
Max

u r r d u u r d r r d u
Min

nfinal nout n1 nin nstart nfinal nout n4 n3 n2 n1 nin nstart

 Path

Variable

u – undefine d – define r - reference

13

Software Quality Assurance – Data Flow Anomaly Analysis

© Prof. Dr. Liggesmeyer

Example with Loops

• Assumption: Data flow anomaly analysis must be done for all paths  if the

number of paths is to large, data flow anomaly analysis may not be feasible

(reason: loops, see path testing)

• Fortunately this assumption is not correct
• Concerning the data flow anomaly analysis it is sufficient to analyze the paths up to the first iteration

of loops (the second execution of the loop body)

• If no data flow anomalies occurred until then, it is ensured that also on the paths with a higher

number of loop iterations no anomalies will occur

14

Software Quality Assurance – Data Flow Anomaly Analysis

© Prof. Dr. Liggesmeyer

Example with Loops

• An operation uses Newtonian iteration as an approximation procedure in order to

determine the square root
• The operation should determine the square root for the non-negative inputs

• For negative inputs the value 0.0 is to be returned

• Due to the approximation procedure it is difficult to give an estimation for the

maximum number of iterations. This may cause an infinite number of paths

(remark: If the loop is well-designed it should terminate for every input, so the

number of iterations will be finite; but in this special case, this is hard to prove.)

15

Software Quality Assurance – Data Flow Anomaly Analysis

© Prof. Dr. Liggesmeyer

Example with Loops

double Sqrt(double X)
{
 double returnValue;
 if (X > 0.0)
 {
 double W;
 while (ABS(W*W-X) > 0.01)
 {
 W = W - ((W*W-X) / (2.0 * W));
 }
 returnValue = W;
 }
 else
 {
 returnValue = 0.0;
 }
 return (returnValue);
}

16

Software Quality Assurance – Data Flow Anomaly Analysis

© Prof. Dr. Liggesmeyer

Example with Loops

nstart

nin

if (X > 0.0) ...

while (ABS (W * W) – X) > 0.01 ...

W = W – ((W * W – X) / (2.0 * W))

returnValue = W

nout

nfinal

else returnValue = 0.0

return (returnValue)

u (X), u (W), u (returnValue)

d (X)

r (X)

r (X), r (W)

r (X), r (W), d (W)

r (W), d (returnValue)

d (returnValue)

r (returnValue)

u (X), u (W), u (returnValue)
17

Software Quality Assurance – Data Flow Anomaly Analysis

© Prof. Dr. Liggesmeyer

Example with Loops

• The analysis of the path which is passed through for non-positive input values is
relatively simple
• X: udru

• W: uu

• returnValue: udru

• None of these data flows contains anomalies

• For positive inputs the loop is executed. The data flow for the variable X begins
with the sub-sequence udrr up to the loop decision. If the loop is not entered, the
sub-sequence u follows directly. If the loop is entered, the sub-sequence rr edges
itself in. This sub-sequence repeats with every further loop execution. Thus, the
data flows on these paths can be given in complete form. The data flow for the
variable X is: udrr(rr)nu, with n >= 0. Value n represents the number of loop
executions. For the variables W and returnValue also complete expressions for
the data flows are received similarly

• X: udrr(rr)nu, n>=0

• W: ur(rdr)nru, n >=0

• returnValue: udru

18

Software Quality Assurance – Data Flow Anomaly Analysis

© Prof. Dr. Liggesmeyer

Example with Loops

• Question: Which values n have to be considered w.r.t. data flow anomaly analysis
• Certainly the case n=0 has to considered, as a new sequence results due to the disappearance of

the bracketed sub-sequence

• The case n=1 also has to be considered, as two new sub-sequence emerge at the beginning of the

bracketed expression and at its end

• Furthermore the case n=2 is to be considered. For clarification the sequence ... r(drd)nr ... should be

looked at which for n=0 and n=1 has no data flow anomalies, but for n=2 (... rdrddrdr ...) shows a dd-

anomaly

• For greater values n no potential new data flow anomalies result. If no data flow anomaly on the

paths up to the second loop execution has occurred yet, none will occur actually. The infinite number

of paths has no influence on this

19

Software Quality Assurance – Data Flow Anomaly Analysis

© Prof. Dr. Liggesmeyer

Example with Loops

• The operation sqrt for the variable W shows a data flow anomaly. The data flow

ur(rdr)nru begins with a ur-anomaly. The value of the variable W is not initialized

yet at the time of the first reading access. However, the operation works correctly

for random positive initial values of W, so that dynamic testing does not detect the

fault reliably. For negative initial values of W the negative root is determined. If W

by accident is initially equal zero, the program crashes, as a divide by zero

occurs. While by dynamic testing this fault can be detected only unreliably, it is

identifiable by data flow anomaly analysis reliably and at very low costs.

20

Software Quality Assurance – Data Flow Anomaly Analysis

© Prof. Dr. Liggesmeyer

Example with Loops

nstart

nin

if (X > 0.0) ...

while (ABS (W * W) – X) > 0.01 ...

W = W – ((W * W – X) / (2.0 * W))

returnValue = W

nout

nfinal

else returnValue = 0.0

return (returnValue)

u (X), u (W), u (returnValue)

d (X)

r (X)

r (X), r (W)

r (X), r (W), d (W)

r (W), d (returnValue)

d (returnValue)

r (returnValue)

u (X), u (W), u (returnValue)

W = 1.0 d (W)

21

