
Software Quality Assurance

Dynamic Test

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Contents

• Properties and goals

• Structural testing
• Control flow testing

• Data flow testing

• Functional test

• Diversified test

2

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Properties and Goals

• Properties of dynamic testing
• Executable program is provided with concrete input values and is executed

• Program may be tested in the real environment

• Never complete

• Correctness of the tested program cannot be proven

• Characteristics of the application of dynamic test methods in practice
• Widely-used

• Often very unsystematically applied

• Tests often not reproducible

• Diffuse activity (Management problems)

3

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Properties and Goals

• The goal of dynamic testing is the generation of test cases that are
• Representative

• Fault sensitive

• Distinct from each other (minimal redundancy)

• Economic

4

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Structural Testing

• Evaluation of the adequacy and completeness of the test cases on the basis of

the software structure. Determination of the correctness of the outputs based on

the specification
• Benefit: Code structure is considered (instructions, branches, data accesses, etc.)

• Disadvantage: Forgotten (not implemented), but specified functions cannot be detected

• Two approaches
• Control flow testing

• Data flow testing

5

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Structural Testing

6

test cases

evaluate

outputs

tester

completeness

specification

image of the

specification

n
1

n
start

n
3

n
4

n
5

n
2

n
final

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Control Flow Testing

• Statement coverage test

• Branch coverage test

• Condition coverage test

• simple

• minimal multiple

• multiple

• LCSAJ-based test

• Boundary interior-path test

• Structured path test

• Path test

Control flow testing is based on the control structure respectively on the control

flow. The basis is the control flow graph.

7

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Control Flow Testing

Example

void CountChars(int &VowelNumber, int &TotalNumber)

// Precondition: VowelNumber <= TotalNumber

{ char ch;

 cin>>ch;

 while ((ch >= 'A')&&(ch <= 'Z')&&

 (TotalNumber < INT_MAX))

 { TotalNumber = TotalNumber+1;

 if((ch == 'A')||(ch == 'E')||(ch == 'I')||

 (ch == 'O')||(ch == 'U'))

 { VowelNumber = VowelNumber + 1;

 }

 cin>>ch;

 } //end while

}

8

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Control Flow Testing: Control Flow Diagram

for the Operation CountChars

n 1

n start
void CountChars (int & VowelNumber ,

int & TotalNumber)

{

char ch;

cin >> ch ;

while ((ch >=‘A‘) && (ch <= ‘Z‘)

&& (TotalNumber < INT_MAX))

{

TotalNumber = TotalNumber + 1;

if ((ch == ‘A‘) || (ch == ‘E‘) ||
(ch == ‘I‘) || (ch == ‘O‘) ||
(ch == ‘U‘))

{

VowelNumber = VowelNumber + 1;

}

cin >> ch

}

}

Path

n 3

n 4

n 5

n final

n 2

branch, edge

instruction, nodes

9

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Control Flow Testing

Statement Coverage

• The statement coverage is the simplest control flow test technique. It is also

referred to as C0-test

• The goal of the statement coverage is to execute each statement at least once,

i.e., the execution of all nodes of the control flow graph

• The statement coverage rate is the relation of the executed instructions to the

total number of the instructions

• Then all instructions of the module to be tested are executed at least once a

complete statement coverage test is achieved

 No untested code !?

nsinstructioofnumber

nsinstructioexecutedofnumber
C ninstructio

10

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Control Flow Testing

Statement Coverage

• Statement coverage test demands the execution of all nodes of the control flow

graph, i.e., the corresponding program paths must contain all nodes of the control

flow graph

• Test case

call of CountChars with: totalnumber = 0

input chars: ’A’, ’1’

path: (nstart, n1, n2, n3, n4, n5, n2, nfinal)

• Observation
• The test path contains all nodes

• but it does not contain all edges of the control flow graph. The edge (n3,n5) is not contained

11

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Control Flow Testing

Statement Coverage

• Statement coverage is considered to be a weak criterion. It has a limited practical

importance

• The standard RTCA DO-178B for software applications in aviation demands to

apply statement coverage to level-C-software. In case of a software failure such a

software can cause a major failure condition

12

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Control Flow Testing

Branch Coverage

• Branch coverage aims at executing all branches of the program to be tested. This

requires the execution of all edges of the control flow graph. It is also referred to

as C1-test

• Branch coverage is a stricter test technique than statement coverage. Statement

coverage is fully contained in branch coverage. Branch coverage subsumes

statement coverage

• Branch coverage is generally considered as a minimal criterion in software unit

testing

• The standard RTCA DO-178B requires branch coverage testing for level-B-

software

13

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Control Flow Testing

Branch Coverage

• Example

 Branch coverage demands the execution of all edges of the control flow graph.

This is achieved if every decision of the unit under test had at least once the

logical value false and true

• Test case

call of CountChars with: totalnumber = 0

input chars: „A“, „B“, „1“

flow path: (nstart, n1, n2, n3, n4, n5, n2, n3, n5, n2, nfinal)

• The test path contains all edges. In particular it contains the edge (n3,n5) which is

not necessarily executed by statement coverage. Branch coverage subsumes

statement coverage

14

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Control Flow Testing

Branch Coverage

• Question: Is branch coverage adequate for testing of complicated, composite
decisions?

• Examples

• Simple decision: if (x > 5)...;

• The decision (x > 5) can be regarded as sufficiently tested if both logical values
occurred within the test. The decision subdivides the possible test data into two
classes and demands that at least one test date is selected from every class

• Complex decision: if (((u == 0) || (x > 5)) && ((y < 6) || (z == 0))) ...

• A test of the decision (((u == 0) || (x > 5)) && ((y < 6) || (z == 0))) against both
logical values cannot be regarded as sufficient, as the structure of the decision is
not considered appropriately

• A complete branch coverage test can be achieved e.g. with the following test cases

Test case 1: u = 1, x = 4, y = 5, z = 0
Test case 2: u = 0, x = 6, y = 5, z = 0

15

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Control Flow Testing

Condition Coverage

• Assumption: Composite decisions are tested from left to right. The evaluation of
decisions stops when its logical value is known. This is referred to as incomplete
evaluation of decisions

• Test case 1 leads to the following situation

• Value 1 of the variable u for the first condition of the OR-connection gives the logical
value false. Therefore the second condition of the OR-connection defines the logical
value of the OR-connection. The choice of the value 4 for the variable x inserted into the
second condition (x > 5) also gives the logical value false. Thus the connection of the
first two decisions also has the logical value false. Due to the subsequent AND-
connection it is already known at this time that the overall decision has the logical value
false. This result is independent from the logical values of the 3rd and 4th condition.
This test case thus does not test these parts of the decision

• In many cases the logical values of some conditions are not tested. Independently of
the fact if they are tested the logical value false for the first condition in an AND-
connection masks the logical values of all further conditions. Such a test case thus is
"blind" with regard to faults in the remaining conditions

16

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Control Flow Testing

Condition Coverage

• Test case 2 causes the following situation

• The choice of the value 0 for the variable u has the effect that the first condition (u == 0)

has the logical value true. Due to the OR-connection of the first two conditions it is

ensured that the result of the first OR-connection is true. The second condition has not

to be tested. The testing can be directly continued with the first condition of the second

OR-connection. The value 5 of the variable y causes the logical value true for the

condition (Y < 6). Due to the OR-operator it is ensured at that time that the overall result

will be true, independently of the logical value of the fourth condition. Thus this test case

is "blind" with regard to the faults in the 2nd and 4th condition

• The test cases 1 and 2 cause a complete branch coverage. None of the two test

cases tests the fourth partial decision. Then decisions are evaluated from left to

right the conditions at the right hand site may remain untested

 branch coverage is usually inadequate for testing compound decisions

17

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Control Flow Testing

Condition Coverage

• The decision (((u ==0) || (x > 5)) &&

((y < 6) || (z ==0))) is abbreviated to

((A || B) && ((C || D). We assume that

between the values of the variables

u, x, y, and z no dependences exist.

Then the partial decisions A, B, C,

and D can be true (T) or false (F)

independently of each other.

Concerning a complete evaluation of

decisions 16 combinations of logical

values are possible

A B C D A||B C||D (A||B)&&(C||D)

1 F F F F F F F

2 F F F T F T F

3 F F T F F T F

4 F F T T F T F

5 F T F F T F F

6 F T F T T T T

7 F T T F T T T

8 F T T T T T T

9 T F F F T F F

10 T F F T T T T

11 T F T F T T T

12 T F T T T T T

13 T T F F T F F

14 T T F T T T T

15 T T T F T T T

16 T T T T T T T
18

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Control Flow Testing

Simple Condition Coverage

• The simple condition coverage demands the test of all simple conditions

concerning true and false

• Benefits: simple, low test costs

• Disadvantages
• Limited performance

• In general (concerning the complete evaluation of decisions) it cannot be guaranteed that the simple

condition coverage subsumes the branch coverage

19

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Control Flow Testing

Simple Condition Coverage

• A simple condition coverage can be

achieved, e.g., with the two test

cases 6 and 11. The four simple

conditions A, B, C, D are tested each

against true and false

• The conditions (A || B) and (C || D)

and the decision ((A || B) && (C || D))

are true in both cases

• These test cases do not achieve a

complete branch coverage

A B C D A||B C||D (A||B)&&(C||D)

1 F F F F

2 F F F T

3 F F T F

4 F F T T

5 F T F F

6 F T F T T T T

7 F T T F

8 F T T T

9 T F F F

10 T F F T

11 T F T F T T T

12 T F T T

13 T T F F

14 T T F T

15 T T T F

16 T T T T

20

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Control Flow Testing

Simple Condition Coverage

• If the test cases 1 and 16 were

chosen a complete branch coverage

would have been achieved

• As the example shows there are test

cases which fulfill the simple

condition coverage without ensuring

a branch coverage

• The simple condition coverage does

not ensure the branch coverage

A B C D A||B C||D (A||B)&&(C||D)

1 F F F F F F F

2 F F F T

3 F F T F

4 F F T T

5 F T F F

6 F T F T

7 F T T F

8 F T T T

9 T F F F

10 T F F T

11 T F T F

12 T F T T

13 T T F F

14 T T F T

15 T T T F

16 T T T T T T T

21

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Control Flow Testing

Simple Condition Coverage

• If decisions are evaluated

incomplete from left to right

only 7 combination of truth-

values exist (instead of 16)

• The test cases 6 and 11 which

produce a simple condition

coverage if decisions are

evaluated completely are

mapped to test cases III and

VII

• In contrast to the incomplete

evaluation of decisions the two

test cases cause no complete

simple condition coverage

Test cases A B C D A||B C||D (A||B)&&(C||D)

I 1, 2, 3, 4 F F - - F - F

II 5 F T F F T F F

III 6 F T F T T T T
IV 7, 8 F T T - T T T

V 9, 13 T - F F T F F

VI 10, 14 T - F T T T T

VII 11, 12, 15, 16 T - T - T T T

22

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Control Flow Testing

Simple Condition Coverage

• Partial decision B can be tested against

false only by selecting test case I

• To test D against false either test case II

or V has to be executed

• A simple condition coverage is possible,

e.g., with the test cases I, II, III and VII

• In addition these test cases ensure a

complete branch coverage

• This rule is valid in every situation: If

decisions are evaluated incompletely

the simple condition coverage

subsumes branch coverage

A B C D A||B C||D (A||B)&&(C||D)

I F F - - F - F

II F T F F T F F

III F T F T T T T
IV F T T - T T T

V T - F F T F F

VI T - F T T T T

VII T - T - T T T

23

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Control Flow Testing

Condition/Decision Coverage

• The condition/decision coverage guarantees a complete branch coverage in

addition to a simple condition coverage

• It demands that the branch coverage is taken into account explicitly in addition to

the condition coverage

• As this is already ensured by the simple condition coverage test concerning an

incomplete evaluation of decisions this method is important only for the case of

the complete evaluation of decisions

• Benefits: simple, low test costs, branch coverage is ensured

• Disadvantages
• Limited performance

• Structure of decisions is not really considered

24

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Control Flow Testing

Condition/Decision Coverage

• The execution of the test cases 5 and

12 results in a complete

condition/decision coverage, as the

partial decisions A, B, C, and D and

the overall decision are each

evaluated to true and false

• This is possible without testing the

composite conditions (A || B) and (C

|| D) against both logical values

• The condition/decision coverage tests

simple conditions and decisions

• It widely ignores the

decomposition of compound

decisions into conditions on

several levels

A B C D A||B C||D (A||B)&&(C||D)

1 F F F F

2 F F F T

3 F F T F

4 F F T T

5 F T F F T F F

6 F T F T

7 F T T F

8 F T T T

9 T F F F

10 T F F T

11 T F T F

12 T F T T T T T

13 T T F F

14 T T F T

15 T T T F

16 T T T T
25

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Control Flow Testing

Minimal Multiple Condition Coverage

• The minimal multiple condition coverage test demands that besides the simple

conditions and the decision also all composite conditions are tested against true

and false

• As decisions can be hierarchically structured it is useful to consider this structure

during testing

• This condition coverage technique takes into account the structure of decisions in

a better way than the methods presented above, as all nesting levels of a

compound decision are equally considered

26

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Control Flow Testing

Minimal Multiple Condition Coverage

• Concerning a complete evaluation of
decisions the execution of the test cases 1
and 16 results in a complete minimal
multiple condition coverage (all conditions
A, B, C, D, (A || B) and (C || D) and the
decision ((A || B) && (C || D)) are tested
against both logical values)

• Upon closer examination it can be
recognized that these two test cases do not
test the logic structure of the decision in a
really useful way: If the decision incorrectly
was ((A && B) || (C && D)), none of the two
test cases would have detected this,
although all operators would be faulty. For
all conditions and the overall decision
identical logical values would have
appeared. The test cases are “blind“
towards this fault

A B C D A||B C||D (A||B)&&(C||D)

1 F F F F F F F

2 F F F T

3 F F T F

4 F F T T

5 F T F F

6 F T F T

7 F T T F

8 F T T T

9 T F F F

10 T F F T

11 T F T F

12 T F T T

13 T T F F

14 T T F T

15 T T T F

16 T T T T T T T
27

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Control Flow Testing

Minimal Multiple Condition Coverage

• Concerning an incomplete evaluation of

decisions, e.g., the four test cases I, II,

VI, and VII are required

• higher test costs

• better results

• If the decision incorrectly was ((A && B)

|| (C && D)), e.g., test case I would have

proceeded differently. The conditions A,

C, (A && B) and (C && D) would have

been evaluated to false. The conditions

B and D would not have been

evaluated. The overall decision is false.

The same result is obtained, but in a

different way. The evaluation of the

decision is broken off at other points

which is a chance for the detection of

faults

A B C D A||B C||D (A||B)&&(C||D)

I F F - - F - F

II F T F F T F F
III F T F T T T T

IV F T T - T T T

V T - F F T F F

VI T - F T T T T

VII T - T - T T T

28

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Control Flow Testing

Modified condition/decision coverage

• The modified condition/decision coverage requires test cases which demonstrate

that every condition can influence the logical value of the overall decision

independently of the other conditions

• The application of this method is required by the standard RTCA DO-178 B for

flight critical software (level A)

• Basically the method aims at a test as extensive as possible with justifiable test

costs
• The relation between the number of conditions and the required test cases is linear

• For the test of a decision with n conditions at least n+1 test cases are required. The maximum

number of test cases is 2n

29

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Control Flow Testing

Modified Condition/Decision Coverage

• Test of the condition B with the test
cases 2 and 6

• Show identical logical values for the
conditions A, C, and D

• Differ in the logical values of the
condition B. In test case 2 condition B
has the logical value false. In test case
6 condition B is true

• Differ in the overall result (test case 2
gives the overall result false, while in
test case 6 the decision has the value
true)

• Thus it is proven that the simple
condition B can independently
influence the logical value of the overall
decision

• A corresponding situation is given for
the test cases 2 and 10 concerning A,
9 and 10 concerning D, and 9 and 11
concerning C

A B C D A||B C||D (A||B)&&(C||D)

1 F F F F

2 F F F T F T F
3 F F T F

4 F F T T

5 F T F F

6 F T F T T T T
7 F T T F

8 F T T T

9 T F F F T F F

10 T F F T T T T

11 T F T F T T T
12 T F T T

13 T T F F

14 T T F T

15 T T T F

16 T T T T

B

A

D

C

30

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Control Flow Testing

Modified Condition/Decision Coverage

• Concerning an incomplete evaluation of
decisions it is necessary to modify the
requirement, to retain the logical values of the
respectively not tested conditions, while the
logical values of the condition under test and
the overall decision change

• Now, for every simple condition the existence
of a test case pair is required which

• Covers both logical values concerning this
condition

• Covers both logical values concerning the overall
decision

• Has identical logical values for all other simple
conditions or was not evaluated at this point

• Example: Test cases I and VII are testing the
condition A. They give different logical values
for the condition A and the overall decision and
concerning the remaining conditions only have
logical values if these were not evaluated in the
respectively other test case

A B C D A || B C ||D (A ||B) && (C || D)

I F F - - F - F

II F T F F T F F

III F T F T T T T

IV F T T - T T T

V T - F F T F F

VI T - F T T T T

VII T - T - T T T

A

B

C

D

31

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Control Flow Testing

Modified Condition/Decision Coverage

• A complete modified

condition/decision coverage causes

a branch coverage on the object

code level

32

f

f

f

f

f

B

A

C

D

I

II
III

IV
VII

t

t

t t

t

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Control Flow Testing

Modified Condition/Decision Coverage

• But: Not every branch coverage test

on the object code level causes a

complete modified condition/decision

coverage

33

f

f

f

f

f

B

A

C

D

I

II
III

VII

t

t

t t

t

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Control Flow Testing

Multiple Condition Coverage

• The multiple condition coverage requires
the test of all value combinations of the
conditions

• Benefits
• Very extensive test

• Subsumes the branch coverage test and all other
condition coverage test techniques

• Disadvantages
• High test costs (2n test cases for a decision

which is contains n simple conditions)

• Sometimes there exists no test data for certain
combinations (e.g., because of incomplete
evaluation of decisions or dependences between
conditions)

A B C D A||B C||D (A||B)&&(C||D)

1 F F F F F F F

2 F F F T F T F

3 F F T F F T F

4 F F T T F T F

5 F T F F T F F

6 F T F T T T T

7 F T T F T T T

8 F T T T T T T

9 T F F F T F F

10 T F F T T T T

11 T F T F T T T

12 T F T T T T T

13 T T F F T F F

14 T T F T T T T

15 T T T F T T T

16 T T T T T T T
34

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Control Flow Testing

Path Coverage

• A program execution causes the execution of a program path which usually

contains several branches and instructions

• Question: How can this be taken into account by a test technique?

35

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Control Flow Testing

Path Coverage

• A complete path coverage requires the execution of all different paths of the

program to be tested

• A path p is a sequence of nodes (i, n1,.., nm, j) in the control flow graph with the start

node i and the end node j

• Disadvantages

• The path coverage test normally is not executable for real programs, as they can have

an infinite number of paths. Assuming that the maximum value of an Integer-variable is

32767, we get 232768-1 test paths for the operation CountChars. This is roughly 1,41 ·

109864 paths. The required test time for a test that runs non-stop and executes 1000

paths per second would be 4,5 · 109853 years. For comparison: The age of the earth is

estimated to roughly 4,5 · 109 years. Therefore, a complete path coverage test of the

operation CountChars is absolutely impossible

• Often a fraction of the paths is not executable

• Question: How can the path coverage test be modified so that it is feasible?

36

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Control Flow Testing: Structured Path Test

and Boundary Interior Path Test

• The Structured path test distinguishes only paths that execute a loop not more

than k times. This avoids the explosion of the number of paths caused by loops

• The structured path test with k=2 is called boundary interior coverage

• The boundary interior coverage differentiates the three cases no loop execution,

one loop execution and at least two loop executions. This is especially useful due

to the possible interactions between variables before, in and after the loop

37

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Control Flow Testing

Boundary Interior Test

• Example

 The following test cases are necessary for a boundary interior test of the

operation CountChars

• 1. Test case for the path outside of the loop

The execution with totalnumber = INT_MAX results in the non-execution of the loop body

 test path: nstart, n1, n2, nfinal

38

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Control Flow Testing

Boundary Interior Test

• 2. Boundary test cases

a. The execution with totalnumber = 0 and the input of the character string A1 causes the entering

of the loop body, the execution of the true-branch of the selection, and subsequently the

termination of the loop

 test path: nstart, n1, n2, n3, n4, n5, n2, nfinal

b. The execution with totalnumber = 0 and the input of the character string B1 causes the entering

of the loop body, the execution of the false-branch of the selection and subsequently the

termination of the loop

 test path: nstart, n1, n2, n3, n5 ,n2, nfinal

39

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Control Flow Testing

Boundary Interior Test

• 3. Interior test cases

a. The execution with totalnumber = 0 and the input of the character string EIN1 causes three
executions of the loop body. At the first two executions the true-branch of the selection is
passed through. The third loop execution is irrelevant for the test

test path: nstart, n1, n2, n3, n4, n5, n2, n3, n4, n5, n2, n3, n5, n2, nfinal

b. The execution with totalnumber = 0 and the input of the character string AH! causes two
executions of the loop body. At the first execution the true-branch of the selection is passed
through. At the second execution the false-branch is passed. The exclamation mark terminates
the execution of the loop which is allowed for the interior test after the second execution of the
loop body

test path: nstart, n1, n2, n3, n4 ,n5 , n2, n3, n5, n2, nfinal

40

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Control Flow Testing

Boundary Interior Test

c. The execution with totalnumber = 0 and the input of the character string HH! causes two
executions of the loop body. At both executions the false-branch of the selection is passed
through. The exclamation mark terminates the loop execution

test path: nstart, n1, n2, n3, n5, n2, n3, n5, n2, nfinal

d. The execution with totalnumber = 0 and the input of the character string HA! causes two
executions of the loop body. At the first execution the false-branch of the selection is
passed through. At the second execution the true-branch of the selection is passed
through. The exclamation mark terminates the loop execution

test path: nstart, n1, n2, n3, n5, n2, n3, n4, n5, n2, nfinal

• The seven test cases are sufficient for the complete test of the loop according to
the boundary interior criterion

41

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Control Flow Testing: Relations of the

Control Flow Tests (Subsumes Hierarchy)

path coverage test

structured

path test

(k 2)

LCSAJ test modified

boundary

interior test

multiple condition

coverage test

boundary

interior test

branch coverage test

statement coverage test

modified condition/

decision coverage
test

minimal multiple

condition coverage

test

condition/decision

coverage test

simple condition

coverage test

42

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Data Flow Testing

• Data flow testing is based on the data flow. The basis is the control flow graph

enhanced by data flow attributes

• Accesses to variables are assigned to one of the classes
• write: definition (def)

• read: computational use (c-use)

• read: predicate use (p-use)

43

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Data Flow Testing: Control Flow Graph

with Data Flow Attributes for CountChars

n 2

n 1

n Start

n 3

n 4

n 5

n 6

n Final

void CountChars (int &vowel number,
 int &total number)
{

cin >> ch ;

while ((ch >= 'A') && (ch <= 'Z')
 && (total number < INT_MAX))
{

total number = total number + 1;

if ((ch == 'A') || (ch == 'E') ||
 (ch == 'I') || (ch == 'O') ||
 (ch == 'U'))
{

vowel number = vowel number + 1;

cin >> ch
}

}

}

n 2

n 1

n 2

n 1 def (ch)

p-use (ch)

def (total number)
def (vowel number)

n 1 n 1 n in

p-use (ch)
p-use (total number)

c-use (total number)
def (total number)

c-use (vowel number)
def (vowel number)

def (ch)

c-use (vowel number)
c-use (total number)

n out

n 2

n 1

n Start

n 3

n 4

n 5

n 6

n Final

void CountChars (int &vowel number,
 int &total number)
{

cin >> ch ;

while ((ch >= 'A') && (ch <= 'Z')
 && (total number < INT_MAX))
{

total number = total number + 1;

if ((ch == 'A') || (ch == 'E') ||
 (ch == 'I') || (ch == 'O') ||
 (ch == 'U'))
{

cin >> ch
}

}

}

n 2

n 1

n 2

n 1 def (ch)

p-use (ch)

def (total number)
def (vowel number)

n 1 n 1 n in

p-use (ch)
p-use (total number)

c-use (total number)
def (total number)

c-use (vowel number)
def (vowel number)

def (ch)

c-use (vowel number)
c-use (total number)

n out

vowel number = vowel number + 1;

n 2

n 1

n

n 3

n 4

n 5

n 6

n Final

void CountChars (int &vowel number,
 int &total number)
{

cin >> ch ;

while ((ch >= 'A') && (ch <= 'Z')
 && (total number < INT_MAX))
{

total number = total number + 1;

if ((ch == 'A') || (ch == 'E') ||
 (ch == 'I') || (ch == 'O') ||
 (ch == 'U'))
{

cin >> ch
}

}

}

n 2

n 1

n 2

n 1 def (ch)

p-use (ch)

def (total number)
def (vowel number)

n 1 n 1 n in

p-use (ch)
p-use (total number)

c-use (total number)
def (total number)

c-use (vowel number)
def (vowel number)

def (ch)

c-use (vowel number)
c-use (total number)

n out

44

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Data Flow Testing

• Example
• The instruction y = x+1; contains a c-use of the variable x, followed by a definition (def) of the

variable y

• The instruction IF (x=0) THEN... contains a p-use of the variable x

• The all defs-criterion demands
• That every definition (all defs) of a variable is used at least once in a computation or a predicate. The

objective of an assignment to a variable is that this value is used somewhere once again. The tests

have to be chosen in such a way that this is tested at least once for every assignment to every

variable

45

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Data Flow Testing

• All p-uses-test
• The all p-uses-test requires that every p-use that exists w.r.t. each definition is taken into account

during testing

• All c-uses-test
• The all c-uses-test requires that every c-use that exists w.r.t. each definition is taken into account

during testing

• All c-uses / some p-uses-test resp. all p-uses / some c-uses-test
• If no c-uses resp. p-uses exist for some variable definitions, it is required that at least one p-use

resp. c-use is tested

• All uses-test
• All c-uses-test + All p-uses-test

46

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Data Flow Testing

def(x)

c-use1(x) c-use2(x) p-use1(x)

all-defs

all-c-uses
all-p-uses all-uses

47

p-use2(x)

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Data Flow Testing

• Test path for the all p-uses-test

n 4

n 3

n 6

n 2

n start

n in

n 1

n 2

n out

n final

def (total number)

p-use (ch), p-use (total number)

def (ch)

p-use (ch), p-use (total number)

def (total number)

 def (total number)

def (ch)
p-use (ch)

Legend:

n i

n j

 p-use (...) tested predicate-use

predicate-use (p-use)

n 4

n 5

n 6

n 2

n 3

n 4

n 5

n 6

n 2

n 3

def (ch)

p-use (ch)

p-use (ch), p-use (total number)

def (ch)

p-use (ch)

48

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Data Flow Testing: Relations of the Control

Flow Tests (Subsumes Hierarchy)

49

path coverage

all paths

data context

coverage

classified

data context

coverage

simple

all du-paths

all uses

required

k-tuples-test

all c-uses/

some p-uses

all p-uses/

Some c-uses

all c-uses all defs all p-uses

branch

coverage

all edges

statement

coverage

all nodes

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Functional Test (Specification-based Test)

• Determination of the adequacy and the completeness of the test cases as well as

derivation of the test data and evaluation of the outputs based on the specification
• Benefits: Completeness w.r.t. the specification is checked. The test cases are systematically drawn

from the specification

• Disadvantage: Information represented by the code is discarded

50

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Functional Test (Specification-based Test)

51

test cases

evaluate

outputs

tester

completeness

specification

image of the

specification

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Functional Test (Specification-based Test)

Equivalence Partitioning

• Identification of equivalence classes based on the specification (Divide &

Conquer)

• All Values from an equivalence class
• Shall cause an identical behavior and

• Shall belong to the same specified program function

• All specified program functions are tested with values from the equivalence class

assigned to them

• Equivalence classes are also generated from the outputs

52

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

• If a value range is specified as the valid input domain for a particular input

variable, this range represents a valid equivalence class which is enframed by

invalid equivalence classes at its lower and upper boundary

• Example

• Input range: 1 x 99

• One valid equivalence class: 1 x 99

• Two invalid equivalence classes

• x < 1

• x > 99

53

Functional Test (Specification-based Test)

Equivalence Partitioning - Invalid and valid Equivalence Classes

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

• The equivalence classes are to be numbered. For the generation of test cases

from the equivalence classes two rules have to be applied
• The test cases for valid equivalence classes are generated by the selection of test data from as

many valid equivalence classes as possible

• The test cases for invalid equivalence classes are generated by the choice of test data from an

invalid equivalence class. It is combined with values which are extracted exclusively from valid

equivalence classes

• Selection of the concrete test data from an equivalence class according to

different criteria

• Often used: test of the equivalence class boundaries (boundary value analysis)

54

Functional Test (Specification-based Test)

Equivalence Partitioning - Invalid and valid Equivalence Classes

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Functional Test (Specification-based Test)

Equivalence Partitioning

• A program for the inventory management of a shop is capable to register

deliveries of wooden boards
• If wooden boards are delivered, the sort of the wood is entered

• The program knows the wood sorts Oak, Beech, and Pine

• Furthermore, the length is given in centimeters which is always between 100 and 500

• As delivered number a value between 1 and 9999 can be given

• In addition, the delivery gets an order number

• Every order number for wood deliveries begins with the letter W

55

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Functional Test (Specification-based Test)

Equivalence Partitioning

Equivalence classes

Input Valid Equivalence Class Invalid Equivalence Class

Sort 1) Oak

2) Beech

3) Pine

4) All others, e.g. steel

Length 5) 100 <= Length <= 500 6) Length < 100

7) 500 < Length

Number 8) 1<= Number <= 9999 9) Number < 1

10) 9999 < Number

Order number 11) First character is W 12) First character is not W

56

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Functional Test (Specification-based Test)

Equivalence Partitioning

Test cases according to equivalence partitioning combined with boundary

value analysis

Test case

Testes

Equivalence

Classes

Oak

Length 100

Number 1

Order number W1

Sort

1,

5L,

8L,

11

Beech

500

9999

W2r

2,

5U,

8U

Pine

200

100

W54

3

Steel

200

100

W54

4

1 2 3 4

Oak

99

100

W54

6U

5

Oak

501

100

W54

7L

6

Oak

200

0

W54

9U

7

Oak

200

10000

W54

10L

8

Oak

200

100

V1

12

9

57

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Functional Test (Specification-based Test)

Equivalence Partitioning

Exercise

• The class "triangle" contains the lengths of the triangle sides side1, side2 and

side3 as integer-attributes. The operation "type ()" determines the type of the

triangle on the basis of these side lengths. The following cases are differentiated
• No triangle: data error of the side lengths

• Equilateral

• Right-angled

• Isosceles

• Scalene

• The type right-angled is output with priority, i.e., if for example a scalene triangle

is right-angled, not scalene but right-angled is output

58

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Functional Test (Specification-based Test)

State-based Testing

• Example: section of a specification
• Parameters

• PORT_A: calling phone

• PORT_B: called phone

• PORT_A identifies the connection from which a call is to be set up. The actual state of the call setup
is globally available. Depending on this a new state arises after the evaluation of the transferred
event. The delivered state is DISCONNECTED, if the call setup was terminated, it is DIALING, if the
call setup is in progress but not completed yet. It is CONNECTED, if the call setup was successfully
completed. In this case PORT_B delivers the connection of the selected subscriber, otherwise the
data content of PORT_B is undefined. A call setup requires the sequence UNHOOK (DIGIT_N)* and
the digit sequence must represent a valid number. HANG UP always leads to the complete
termination of the call. If TIMEOUT occurs, HANG UP brings the software back into the initial state
(DISCONNECTED)

59

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Functional Test (Specification-based Test)

State-based Testing

60

TIMEOUT
OCCURRED

hang up/
reset dialed number

unhook/
reset dialed number

hang up/
reset dialed number,

reset connection

dialed number valid/
establish connection

hang uptimeout/
reset dialed number

digit_0, digit_1,
..., digit_9/
add digit to

dialed number,
validate

dialed number

timeout/
reset dialed number

dialed number invalid

hang up/
reset dialed number

DIALING

INVALID NUMBER

DISCONNECTED

CONNECTED

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Functional Test (Specification-based Test)

State-based Testing

• The minimal test strategy is to cover each state at least once.

• A better solution is to cover each transition at least once, which leads, e.g., to the

following test cases

• DISCONNECTED, unhook DIALING, hang up DISCONNECTED

• DISCONNECTED, unhook DIALING, timeout TIMEOUT OCCURRED, hang up

 DISCONNECTED

• DISCONNECTED, unhook DIALING, Digit 0..9 DIALING, Digit 0..9 DIALING,

dialed number valid CONNECTED, hang up DISCONNECTED

• DISCONNECTED, unhook DIALING, Digit 0..9 DIALING, Digit 0..9 DIALING,

dialed number invalid INVALID NUMBER, timeout TIMEOUT OCCURRED, hang

up DISCONNECTED

• Furthermore, it is useful to test all events if transitions can be initiated by more

than one events. The result is a hierarchy of test techniques

all states all transitions all events

• Important: Do not forget to test the failure treatment!

61

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Functional Test (Specification-based Test)

State-based Testing

62

State

Event

DISCONNECTED DIALING CONNECTED INVALID NUMBER
TIMEOUT

OCCURRED

unhook

hang up

digit_0

digit_9

timeout

dialed number
valid

dialed number
invalid

DIALING

CONNECTED

INVALID
NUMBER

DISCONNECT
ED

DISCONNECT
ED

DISCONNECT
ED

DISCONNECT
ED

DIALING

DIALING

TIMEOUT
OCCURRED

reset
dialed

number

reset
dialed

number

add digit to
dialed number,
validate dialed

number

add digit to
dialed number,
validate dialed

number

reset
dialed

number

establish
connection

CONNECTED

CONNECTED

DISCONNECT
ED

DISCONNECT
ED

INVALID
NUMBER

INVALID
NUMBER

TIMEOUT
OCCURRED

TIMEOUT
OCCURRED

reset
dialed

number

reset
dialed

number

TIMEOUT
OCCURRED

TIMEOUT
OCCURRED

reset dialed
number, reset

connection
previous state

event

following
state

action

FAILURE

FAILURE FAILURE FAILURE FAILURE

FAILURE

FAILURE

FAILURE

FAILURE

FAILURE

FAILURE

FAILURE

FAILURE

FAILURE

FAILURE

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

63

Functional Test (Specification-based Test)

State-based Testing – “Failure”-state added

TIMEOUT
OCCURRED

hang up/
reset dialed number

unhook/
reset dialed number

hang up/
reset dialed number,

reset connection

dialed number valid/
establish connection

hang up

timeout/
reset dialed number

digit_0, digit_1,
..., digit_9/
add digit to

dialed number,
validate

dialed number

timeout/
reset dialed number

dialed number invalid

hang up/
reset dialed number

DIALING

INVALID
NUMBER

DISCONNECTED

CONNECTED

FAILURE

unhook,
dialed number valid,

dialed number invalid

unhook

hang up,
timeout,

dialed number valid,
dialed number invalid

unhook,
timeout,

dialed number valid,
dialed number invalid,

unhook,
dialed number valid,

dialed number invalid,

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Evaluation of State-based Testing

+ State-based tests can be used in unit and system testing.

+ It has widespread use particularly in technical applications such as industry

automation, avionics, or the automotive industry.

- In state charts of large systems, there tends to be an explosion in the number of

states, which leads to a considerable increase in transitions.

64

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Other Function-oriented Test Techniques

Transaction Flow Testing

• According to /Beizer 90/ a transaction is a processing module from the view of a

system user. Transactions consist of a sequence of processing steps.

• Representation forms for the notation of transaction flow:
• Flow diagram /Beizer 90/

• Sequence diagrams (Message Sequence Chart (MSC) in the object oriented method UML)

+ A good basis for generating test cases. It directly specifies possible test

cases.

- Sequence diagrams display only one out of many different options.

65

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Other Function-oriented Test Techniques

Transaction Flow Testing - A message sequence diagram

66

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Other Function-oriented Test Techniques

Test on the Basis of Decision Tables or Decision Trees

• Decision tables or decision trees can be used as a basis for function-oriented

tests.

+ They guarantee a certain test-completeness by way of their methodical approach.

- The size of this representation increases exponentially with the number of

conditions.

67

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Test on the Basis of Decision Tables or

Decision Trees: Example

• The following application specifies whether an e-commerce enterprise settles

orders per invoice. Whether the payment of a invoice is possible is determined by

if the customer is a new customer, if the order amount is greater than 1000€ and if

he is a private customer. The three conditions result in eight combinations.

68

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Test on the Basis of Decision Tables or

Decision Trees: Example – Decision table

Conditions Customer = New

Customer

N N N N Y Y Y Y

Order Value > 1000 € N N Y Y N N Y Y

Customer Type =

Private

Customer

N Y N Y N Y N Y

Action invoice payment is

possible

Y Y Y Y Y Y Y N

69

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Test on the Basis of Decision Tables or Decision Trees:

Example – Optimized decision table

Conditions Customer = New Customer N - - Y

Order Value > 1000 € - - N Y

Customer Type = Private Customer - N - Y

Action invoice payment is possible Y Y Y N

70

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Test on the Basis of Decision Tables or

Decision Trees: Example – Decision tree

Every path from the root to a leaf of the tree corresponds to a test case.

Therefore, there would be four test cases. 71

Customer =
New Customer

Customer =
New Customer

OrderValue
> 1000€

OrderValue
> 1000€

CustomerType =
PrivateCustomer

CustomerType =
PrivateCustomer

invoice is
possible

invoice is
possible

invoice is
possible

invoice is
possible

invoice is
possible

invoice is
possible

invoice is not
possible

invoice is not
possible

N Y

N

N

Y

Y

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Diversified Test

• Test of several software versions against each other

• Back to Back Test

• Implementation of 2, 3, or even more versions by independent programmers based on
the same specifications

• Evaluation of the outputs by automated comparison

• Benefit: test execution (incl. checking of outputs) can be done automatically (saves time
and money)

• Disadvantages: Multiple implementation is required. Faults occurring in all versions are
not detected

• Mutations Test

• In fact no test method but a possibility to evaluate the efficiency (error detection rate) of
test methods. Not explained here

• Regression Test

• Test of the present version against the previous version in order to identify undesired
changes of the behavior (e.g. by faults introduced during modification and fault
correction)

72

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Diversified Test: Back to Back Test

73

evaluate

outputs

specification

test cases

Programmer Programmer

image of the

specification

image of the

specification

≠

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Diversified Test : Back to Back Test

• The Back to Back Test requires the

multiple realization of software

modules based on identical

specifications

• The Back to Back Test is

economically applicable, if

outstanding safety and/or reliability

requirements exist or an automatic

evaluation of the outputs is desired

or required

• Common faults remain
undetected

Faults in

version 1
Faults in

version 2

Faults in

version 3
Common faults in

all versions

(will not be detected)
74

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Some additional Dynamic Test

“Techniques”

• Boundary value analysis
• The boundary value analysis selects test data from boundaries

• Special values testing / Error guessing
• Special values testing selects test cases based on the expertise of experienced testers not

acceptable as a single technique, but maybe ok in combination this other techniques, e.g.

equivalence partitioning

• Stochastic test, also random test
• Random test selects test data that fulfills certain statistical requirements. It is not identical with the ad

hoc-procedure of unsystematic testing

• Random testing is usually used in combination with statistical techniques, that allow to determine

and predict reliability on a quantitative basis. It may also be used as the test data generation

technique for Back to Back testing

75

Software Quality Assurance – Dynamic Test

© Prof. Dr. Liggesmeyer

Evaluation of data from a Stochastic Test

76

