0101Seda010100

software engineering dependability

Safety and Reliability of Embedded Systems (Sicherheit und Zuverlässigkeit eingebetteter Systeme) FMECA (Failure Modes, Effects and Criticality Analysis)

Content

- Definition
- Accomplishment
- Literature

Safety and Reliability of Embedded Systems © Prof. Dr. Liggesmeyer

FMECA Definition

- TECHNISCHE UNIVERSITÄT KAISERSLAUTERN
- Failure Modes, Effects and Criticality Analysis (FMECA) is a preventive method for the identification of problems, their risks and effects (DIN 25448, IEC 812)
- FMECA has the following goals:
 - Detection of hazards and problems
 - Identification of potential risks
 - Quantification of risks
 - Determination of corrective measures
- FMECA can be performed as component FMECA (e.g. for a hardware module), as system FMECA (e.g. for a medical device) or as process FMECA (e.g. for a system development process)

Safety and Reliability of Embedded Systems © Prof. Dr. Liggesmeyer

FMECA is done in the following steps

- Fault analysis: Collection of possible faults including available information about the type, causes and consequences
- Risk evaluation with the aid of the risk priority number (RPN)

RPN = occurrence probability * severity of consequences * probability of non-detection

- If for the three influencing factors a value between 1 and 10 is used (1= no risk, minor occurrence; 10 = high risk, high occurrence), the RPN is a value between 1 and 1000
- The risk priority number generates a ranking for the causes of faults
- Causes of faults with a high risk priority number are to be handled with priority

Safety and Reliability of Embedded Systems © Prof. Dr. Liggesmeyer

software engineering dependability

4

Formulate proposed actions

- Gear proposed solutions towards fault prevention
- High occurrence probabilities of faults: An improvement is definitely necessary (also in the case of low severity and high detection probability)
- High severity: In this case corrective measures are also required because of the consequences
- High non-detection probability: Improvement of detection probability by suitable analytical instruments
- Decide for actions
- Analyze residual risk (recalculate RPN)
- Conduct cost-benefit analysis
- Comparison of RPZ before and after the improvement
- Relate obtained improvement to invested effort

Safety and Reliability of Embedded Systems © Prof. Dr. Liggesmeyer

FMECA Accomplishment

Evaluation	Severity (S)	Probability of Occurrence (O)	Probability of Non-Detection (D)		
	Description	Description	Description	Probability	
10	Hazard, violation of laws	Failures almost certain; Numerous faults are known with the same or similar constructions	No detection procedures known or planned	< 90%	
9	Hazard, violation of laws possible	Very large number of failures is likely	Detection possible but uncertain	90%	
8	Total loss of function, customer very angry	Large number of failures is likely	Very low probability		
7	Functions severely limited, customer angry	Moderately large number of failures is likely	Low probability of detection	98%	
6	Failure of individual main functions, customer quite angry	Moderate number of failures is likely	Almost moderate probability of detection		
5	Moderate usage restriction, customer a bit angry	Occasional failures are likely	Moderate probability of detection		
4	Slight usage restriction, customer displeased	Probably few failures	Moderately high probability of detection	99.7%	
3	Minor usage restriction, customer slightly displeased	Probably very few failures	High probability of detection		
2	Very low impact, customer barely affected	Failures rare	Very high probability of detection	99,9%	
1	Customer does not notice impact	Failures unlikely, similar constructions without faults so far	Almost certain detection	99.99%	

6

Safety and Reliability of Embedded Systems © Prof. Dr. Liggesmeyer

FMECA Accomplishment

FMECA Worksheet														
Title: Coiling process FMECA						Date: 01 Sep. 2009								
System/subsystem/component: Coiling process							Page: 1/5							
Analyst: John Doe						Proved by: Jane Doe								
Ref. No	No Component Failure Mode Effect of Failure Cause of Failure		Current		Countermea Responsibilit sures Appointmen		Improved (new)							
					Prevention /testing methods	0	S D	RPN			Performed measures	0	S D	RPN
1 Example	Coiling (coil uniformly according to directive 014.325)	Coiling number too high	Coil resistance too high • Relay does not activate	Interruption of the coiling number counter	Calibrate counter periodically	6	8 8	384	Clean the gear transmission unit of the	Production technician 30 Sep.09	New counter + control 01.Oct.09	2	8 4	64
Influe	Where could there be some problems?	How would the failure manifest itself?	Malfunction What coul happen in case of failure?	d h failure/e be caus	puld pr ffect ed?	whice easure lanned ms of s oduct	n s are l in serial on? With risk?	which RPN	counter (3*8*8=192) Wha who till	at should carry out when?	What measures have beer implemente and when	s n ed ?	With vrisk?	which RPN
Structure Failure Description		Evaluation		Recommendation Improvement Control		Re-Evaluation								

01015eda010100

Safety and Reliability of Embedded Systems © Prof. Dr. Liggesmeyer

- DIN 25448, Ausfalleffektanalyse (Fehler-Möglichkeits- und -Einfluß-Analyse), Berlin: Beuth Verlag, Mai 1990
- IEC 812, Analysis Techniques for System Reliability Procedure for Failure Mode and Effect Analysis (FMEA), International Electrotechnical Commission, 1985
- Liggesmeyer, Qualitätssicherung softwareintensiver technischer Systeme, Heidelberg: Spektrum-Verlag, 2000
- Mäckel O., Software-FMEA: Chancen und Nutzen der FMEA im Entwicklungsprozess, QZ Qualität und Zuverlässigkeit, Januar 2001, pp. 65 – 68

