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Definition

• Reliability
• Part of the quality with regard to the behavior of an entity during or after given time intervals under 

given application conditions (translated from DIN 40041)

• The property of an entity to fulfill its reliability requirements during or after a given time span under 

given application conditions (translated from DIN ISO 9000 Teil 4)

• A measure for the capability of an item under consideration to remain functional, expressed by the 

probability that the demanded function is executed without failure under given conditions during a 

given time span (Birolini)
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• Hardware Reliability (typical 
assumptions)

• Failures are a result of physical degradation

• When the faulty component is substituted, the 
reliability becomes the initial value of this 
component

• The reliability of the system does not exceed 
the initial value of the system reliability 
through the substitution of components with 
new components

• Hardware reliability is determined by fairly 
constant parameters

Hardware- vs. Software Reliability

1

T2

T3
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Hardware- vs. Software Reliability

• Software Reliability (typical assumptions)
• Failures are a result of design errors that are contained in the product from the start and appear 

accidentally

• After fault correction the system reliability exceeds its initial value (under the assumption that no 
additional faults are introduced)

• Faults that are introduced during debugging decrease reliability

• Reliability parameters are assumed to vary

T1

T2
T3
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• How reliable is my 

system now?

• How reliable will it be 

at the planned release 

date?

• How many failures will 

have occurred by 

then?

... 

Tool Assisted Reliability Modeling
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Tool Assisted Reliability Modeling

• Use of models

• Which models do exist?

• How can I find out, which model fits my purposes best? 

• How can I define the model parameters in order to get dependable reliability predictions? 
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• Failure times

• Time intervals between failures

• Total number of failures at a point in time

• Failures within a given time interval

Description of failure over time

t

t'1 2
3 i-1 i

T1' T2' T3' T i'

T1 T2 T3 T iT i-1

Ausfallzeitpunkte

0

Zeitintervalle zwischen Ausfällen
Anzahl Ausfälle

Failure Times

Intervals Between Failures Number of Failures
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• Lifetime T
• Large number of similar systems under consideration

• Simultaneous start of the systems at time t = 0

• Observed time of the first failure of each system is the so-called lifetime T of this system

• Plot of the fraction of failed systems over t is the so-called empirical distribution function of the 

lifetime (or empirical life distribution)

Modeling of Reliability
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• If the number of systems becomes larger (approximates infinity), the empirical 
life distribution approximates the life distribution F(t)

• Here, lifetime T is a random variable and F(t) is the probability that an arbitrary system 
is not operational at t
F(t) = P{T  t}

• F(t) is the probability that lifetime T is less or equal to t, meaning that a system has 
already failed by t. 

• We use the following assumptions:

F(t = 0) = 0, i.e. a new system is intact, and

lim F(t) = 1, i.e. every system fails sometimes

• Failure Times of 10 Systems 

Modeling of Reliability

t 

Ti(h) 2810 5411 8701 13130 17327 24899 31230 40006 59880 80017

n/N 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

F(t) 0,094 0,174 0,264 0,371 0,457 0,585 0,668 0,765 0,879 0,941
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• Life distribution F(t)

Modeling of Reliability

0,2

0,4

0,6

0,8

1,0
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0,0 t

n/N

F(t)

 = 28341 h

0,632
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• Reliability function R(t)

• F(t) gives the probability that at time t at least one failure has occurred; thus R(t) = 1 - F(t) is the 

probability that at time t no failure has occurred yet

• Probability density f(t)

• The probability density f(t) describes the modification of the probability that a system fails over time 

(t) =

Modeling of Reliability

d F(t)

dt
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• MTBF, MTTF

• A relevant measure for reliability is the Mean Time To Failure (MTTF) or Mean Time Between 

Failure (MTBF)

• The MTTF resp. MTBF defines the mean value of the lifetime resp. the mean value for the time 

interval between two successive failures

• It is determined by calculating the following integral:

T = E(T) =    t f(t) dt

• Failure rate

• The failure rate is the relative boundary value of failed entities at time t in a time interval that 

approximates zero, referring to the entities still functional at the beginning of the time interval 

(t) =           =                       =

Modeling of Reliability

(t)

R(t)

dF(t) / dt

R(t)

- dR(t) / dt

R(t)




0
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• The conditional probability that a system that operated failure free until t also 

survives the period t is

• Thus, the probability that the product fails within t is

1 - = 1 - =                                      =

Modeling of Reliability

R(t + t)

R(t)

R(t + t)

R(t)

1- F(t + t)

1 - F(t)

1 – F (t) – (1 - F(t + t))

1 - F(t)

F(t + t) – F(t)

1 - F(t)
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Modeling of Reliability

• As the given probability for short time intervals t is proportional to t, we divide 

the term by t and determine the boundary value when t approximates 0

• Thus the probability that a system, that is operational at time t fails within the 

(short) time interval t, is approximately t (t)

F(t + t) – F(t)

1 - F(t)
lim
t  0

1

t
=

1

R(t)
lim
t  0

F(t + t) – F(t)

t
=

f(t)

R(t)
= (t)
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• R(t) and failure rate

Modeling of Reliability

0,2

0,4

0,6

0,8

1,0
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0,0 t

R(t)

 = 28341 h

h
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(t)

h

10-5/h
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• Assumption: For the given data (table p. 10) lifetime is exponentially distributed: 

F(t) = 1 – e-t

• The parameter  (failure rate) has to be determined based on failure observations 

in order to achieve an optimal adjustment of the function, according to a 

predetermined criterion. The Maximum-Likelihood-Method provides the following 

parameter  for the exponential distribution:

 =          = 0,0000353 / h

• Reliability: R(t) = 1 – F(t) = e-t

Example for the Distribution Function

N
N

 Ti
i = 1
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• The failure rate  is constant over time

(t) =         =                 =                   =             = 

• A constant failure rate causes an exponential distribution of the lifetime

• Determination of the MTTF

T = E(T) =  t (t) dt =  t  e-t dt =  t e-t dt =  (- t – 1)    =

• If lifetime is exponentially distributed, the MTTF is the reciprocal of the failure rate 

and thus constant

Example for the Distribution Function

(t)

R(t)

dF(t) / dt

R(t)

- dR(t) / dt

R(t)

 e-t

e-t




0




0




0

 e-t

2



0

1


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The Exponential Distribution

• Life distribution: F(t) = 1 - e-t

• Density function: (t) =  e-t

• Reliability function: R(t) = 1 - F(t) = e-t

• Failure rate: (t) = 

• MTTF: T = 
1


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• Life Distribution : F(t) = 1 – e-(t) ; ,  > 0

• or:

F(t) = 1 – e      ; ,  > 0, d. h.     = 

• Density:

(t) =         =   ( t) - 1 e-(t)

• Reliability: R(t) = e(-t)

• Failure rate: 

(t) =         =   ( t) - 1

The Weibull Distribution

1
- t  1



dF(t)

dt

(t)

R(t)
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• Failure rate of the Weibull distribution depending on the form parameter 

The Weibull Distribution

0,5 1,0 1,5 2,00

1

2

3

4

5

(t)

=1

=1,5

=2

=0,5

=3=5

t

=1
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The Poisson Distribution

Assumptions

• The probability of more than one failure within the (short) time interval t can be 

ignored. Thus, failures occur relatively infrequently 

• The probability of a failure within t, respectively within [t, t + t], is  t (see 

definition of failure rate). The probability is proportional to the length of the time 

interval

• Px(t) is the probability, that within time interval [0, t] x failures occur
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The Poisson Distribution

• No failures

• The probability that within time interval [0, t+t] no failures occur is determined by multiplying the 

probability that until time t no failures have occurred (P0(t)) and the probability that within [t, t+t] no 

failures occur (1- t):

• For  t towards 0 one receives: 

• P0(0) = 1, since new systems (t=0) are always operational by definition. For a constant value of  and 

P0(0) = 1 the differential equation has the solution:

    
   

 tP
t

tPttP
ttPttP 0

00
00 1  






     
 tP

dt

tPd

t

tPttP

t
0

000

0
lim 







  tetP 0
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The Poisson Distribution

• The probability that a new system shows no failures until t is R(t)

• Using the definitions for F(t) and f(t), we get: 

    tetPtR  0

     
 

1 1 t tdF t
F t R t e and f t e

dt

       
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The Poisson Distribution 

• Failures

• The probability that within time interval [0, t+t] x failures occur can be determined as follows:

     

   

   

   

0

2

1

...

2

1

x

x

x

x

P t t P t P x failures between t and t t

P t P failures between t and t t

P t P failure between t and t t

P t P no failure between t and t t





      



    

    

    



Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

26

The Poisson Distribution

• Due to the precondition the probability to observe more than one failure in t is zero. Therefore we 

get:

     

   

       

       

   
   

1

1

1

1

1

1

x x

x

x x

x x x

x x

x x

P t t P t P failure between t and t t

P t P no failure between t and t t

P t t P t t

P t t P t P t

P t t P t
P t P t

t

 













      

    

    

     



  
    
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The Poisson Distribution

• With t approximating zero:

• The following term for Px(t) is a solution for this differential equation

(Poisson Distribution)

     
    tPtP

dt

tdP

t

tPttP
xx

xxx

t
1

0
lim 








 
 

!x

et
tP

tx

x

 


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The Poisson Distribution

• This can be shown very easily

• The probability PX(t) provides the correct value P0(t) also for the case that we 

treated separately before

 
 

     

   
 

    tPtP
x

et

x

et

x

etetx

dt

x

et
d

dt

tdP

xx

txtx

txtx

tx

X

1

1

1

!1!

!

!






































   
 tPe

et

dt

tdP t
t

x

X
0

0

0 !0
 







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The Poisson Distribution

• PX(t) fulfills the boundary conditions for t = 0, i.e. P0(0) = 1 and PX(0) = 0, for x  1. 

Furthermore the sum of the probabilities of all x  0 for every t  0 must be 1, i.e.

• The specified sum on the left hand side of the equation is the power series of the 

exponential function on the right hand side. The Poisson Distribution thus fulfills 

the preconditions. If  is constant, the mean value is (t)=t. This is called a 

homogeneous Poisson Process. If  is a function of time, the mean value is

This is called a non-homogeneous Poisson Process (NHPP)

 
      t

x

x

x

x

t

x

tx

x

x e
x

t

x

t
e

x

et
tP 

 



















0

!

000 !
1

!!

     
   

0
!

x tt

x

t e
t d and P t

x




   


 
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• The time of failure i is Ti

• The time interval between failure (i - 1) and failure i is Ti‘

• Ti =      Tj‘, T0 = 0

• M(t) is the number of failures at t

Failure Times and Times between Failures

i


j = 1

    tTitM i 
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Failure Times and Times between Failures

• The probability for j failures until time t is

• The probability for at least i failures at t is

    
    

!j

et
jtMPtP

tj

j

 



  
    

 tTP
j

et
itMP i

ij

tj

 






!


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Musa's Execution Time Model

• A software system fails due to errors in the software randomly at t1, t2, ... (t here 

refers to execution time, i. e. CPU-seconds)
• It is assumed that the number of failures observed in t is linearly proportional to the number of faults 

contained in the software at this time

• (t) is the total number of failures for times t  0 

• (t) is a limited function of t

• The number of failures is a monotonic increasing function of t

• At t=0 no failures have been observed yet: (0)=0 

• After very long execution time (t  ) the value (t) is equal to a. a is the total number of failures in 

infinite time. (There are also models where infinite numbers of failures are assumed to happen)
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Musa's Execution Time Model 

• Model development

• The number of failures observed in a time interval t is proportional to t and to the number of errors 

not yet detected

• With t  0 we get: 

• With (0)=0 and ()=a we get: 

• The failure rate is: 

      
   

 tbba
t

ttt
ttabttt 


 






 
   ttbba

dt

td
'




   bteat  1

    btabett  '



Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

34

Musa's Elementary Execution Model

• The curve for the accumulated number of failures (t) approximates asymptotically 

the expected total number of failures a
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Musa's Elementary Execution Model

• The curve for the failure rate (t) for t = 0 starts at the initial failure rate 0 = ab and 

approximates asymptotically the value 0. The initial failure rate is proportional to 

the expected number of failures a, with the constant of proportionality b 

   

 

     
 

0

0

0 0

0

0

1 1

1 1

t
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t
bt a

t t
bt bt bta a

t a e a e

t abe e

t
t a e a e and t abe e e
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



 



 


  







 
  

 
    

 

 

 
        

 
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Musa's Execution Time Model

 
 
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
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




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t
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
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
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Musa's Execution Time Model

• If  is the present failure rate and a target z is defined,  additional failures will 

occur until this target is reached

• The additional time t until this target is reached is
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• If 

is inserted into the general equation of the Poisson distribution, we get:

Musa's Execution Time Model
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• For a program with an expected total number of 300 failures with an initial 

failure rate of 0,01/CPU-second, models are to be generated

• What is the probability that at a particular execution time at least a certain 

number of failures will have occurred?

Formula for P[Ti  t] 

for 1, 2 and 3 failures 

Examples of Modeling
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• What will be the number of failures w.r.t. execution time?

• Formula for (t)

Examples of Modeling
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• How will the failure rate develop depending on the execution time?

• Formula for (t)

Examples of Modeling
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• Least squares

• Target: Define parameters in such a way that the sum of the squares of the deviations between the 

calculated and the observed values becomes minimal. If Fi refers to the value of the empirical 

distribution function at point ti, the following term is to be minimized:

• Maximum-Likelihood-Method
• Target: Choose parameters in such a way that the probability is maximized to produce a "similar" 

observation to the present observation. The probability density has to be known

Determination of Model Parameters
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Determination of Model Parameters 

Least squares

• Target: Define parameters in such a way that the sum of the squares of the 

deviations between the calculated and the observed values becomes minimal. If Fi

refers to the value of the empirical distribution function at point ti, the following term 

is to be minimized:

• For the exponential distribution we get:
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Determination of Model Parameters 

Least squares 

• The value  that minimizes this term is to be determined

• The value     is calculated by determining the zero point

  ii t
n

i

ii

t

n

i

i

etFe
d

d

d

d




























1

1

2

exp
12

exp

  012
!

ˆˆ




 ii t

ii

t
etFe



̂



Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

45

Determination of Model Parameters 

Least squares

• Sometimes numerical method must be used for this task. A Newtonian iteration 
provides the following results for the Exponential Distribution

• with:

• and:

• For the failure times of the table on page 10 the search for zero points according 
to the Newtonian iteration provides a value     3,9326702 * 10-5/h for the 
exponential distribution
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• Target: Choose parameters in such a way that the probability is maximized to 
produce a "similar" observation to the present observation 

• Precondition: Probability density has to be known

• Likelihood function

• Product of the densities at the observed failure times

• The value is proportional to the probability to observe failure times that 
do not exceed the deviation t w.r.t. the present observation

• It is a function of the distribution function's parameters that are to be 
determined 

• Example:
The parameter  of the exponential distribution is to be determined with 
the Maximum-Likelihood-Method

    tt etfetF     ,1

Determination of Model Parameters 

Maximum-Likelihood-Method
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Determination of Model Parameters 

Maximum-Likelihood-Method

With n observed failure times  t1, ..., tn we get the Likelihood Function:

Due to the monotonicity of the logarithmic function, L und ln L have identical 
maxima

In order to calculate the value     that maximizes the Likelihood Function, the 

derivation according to  must be determined
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Determination of Model Parameters 

Maximum-Likelihood-Method

• is the zero point. For the exponential distribution we get:̂
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Model Selection based on Failure 

Observations

• U-Plot-Method

• Prequential-Likelihood-Method

• Holdout-Evaluation
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Model Selection based on Failure Observations 

U-Plot

• U-Plot

• Graphic method that tests whether a distribution function can be accepted with regard to the present 

observation 

• Additionally, statistical tests (e.g. Kolmogoroff-Smirnov) might be used

• If a random variable T is described by the distribution F(t), the F(ti) of the random variable are equally 

distributed over the interval [0,1]
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Model Selection based on Failure Observations 

U-Plot

• The n values Ui are charted in a U-Plot as follows

• The values Ui are used as y-values in such a way that the value Ui with the position j is attributed 

to the x-value j/n

• If the values Ui are approximately equally distributed, the applied points are located "near by" the 

function y = x, for 

0  x  1
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Model Selection based on Failure Observations 

U-Plot

• Example

The values presented in the table for F(t) are the Ui according to the definition 

stated above

Ti(h) 2810 5411 8701 13130 17327 24899 31230 40006 59880 80017

n/N 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

F(t) 0,094 0,174 0,264 0,371 0,457 0,585 0,668 0,765 0,879 0,941
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Model Selection based on Failure Observations 

U-Plot

• U-Plot of the data
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Model Selection based on Failure Observations

Prequential-Likelihood-Method

• The Prequential-Likelihood-Method compares the suitability of two distribution 

functions under consideration with regard to a given failure observation

• It is based on the following approach

• The failure interval tj is a realization of a random variable with the distribution Fj(t) and the density fj(t)

• Fj(t) and fj(t) are unknown

• The densities of the distribution functions A and B (               resp.               ) can be determined based 

on the failure intervals t1, ... , tj-1

• If the distribution A is more suitable than the distribution B, it can be expected that the value               

is greater than the value           

• The quotient                  will be greater than 1
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Model Selection based on Failure Observations

Prequential-Likelihood-Method
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Model Selection based on Failure Observations

Prequential-Likelihood-Method

• If this analysis is done for every observed failure time interval tj we get the so-

called Prequential-Likelihood-Ratio concerning the distributions A and B

• If A is more appropriate than B with regard to the present failure data, the PLR 

shows a rising tendency

• Example

• We compare the exponential distribution and the normal distribution based on the data from the table 

on page 10 using the Prequential-Likelihood-Method 
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Model Selection based on Failure Observations

Prequential-Likelihood-Method

• The parameters of the distributions are determined using a Maximum-Likelihood-Approach. For the 

exponential distribution, we get:

• For the normal distribution we get: 

• The parameters according to the Maximum-Likelihood-Method are:
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Model Selection based on Failure Observations

Prequential-Likelihood-Method

• The following table shows the densities of the exponential distribution and the normal distribution for 

the arrival time intervals ti based on the failure times T1 to Ti-1 from the table on page 10

• The calculation starts with i = 4. In addition the logarithm of the quotient of the densities and the 

logarithm of the PLRi is contained in the table

• The rising of the PLR underlines that the assumption of exponentially distributed arrival times for the 

present data makes more sense than the assumption of normally distributed arrival times
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Model Selection based on Failure Observations

Prequential-Likelihood-Method

i 1 2 3 4 5 6 7 8 9 10

Ti(h) 2810 5411 8701 13130 17327 24899 31230 40006 59880 80017

ti(h) 2810 2601 3290 4429 4197 7572 6331 8776 19874 20137

fi
Exp/

10-6
74,9 84,8 32,5 52,4 31,3 3,8 7,3

fi
Norm/

10-9
1,1 244558 0,076 101787 10096 0,000008 2362

log

(fi
Exp/ 

fi
Norm)

4,83 -0,46 5,63 -0,29 0,49 8,67 0,49

log

(PLRi)
4,83 4,37 10,00 9,71 10,20 18,87 19,36
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Model Selection based on Failure Observations

Prequential-Likelihood-Method

• PLR of the data
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Model Selection based on Failure Observations

Holdout Evaluation

• Approach

• Only parts of the failure data are used for model calibration. The remaining data are used to judge the 

prediction quality of the calibrated model 

• If an exponential distribution and  a Weibull distribution are calibrated to the first 6 failure times (table 

p. 10) using a Least-Squares-Algorithm, we get the following results:  

• Exponential distribution: 

• Weibull distribution: 
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Model Selection based on Failure Observations

Holdout Evaluation

• The Weibull distribution has – as expected - a better adjustment to the failure 

times T1 to T6. The sum of the deviation squares for the first 6 failure times is 

0,000459 compared to 0,000790 in the exponential distribution 

• The prediction quality of the Weibull distribution is however worse than that of the 

exponential distribution. The sum of the deviation squares for the failure times T7 to 

T10 is 0,00446 for the Weibull distribution; for the exponential distribution is only 

0,00210. We might prefer to use the exponential distribution in order to avoid 

„over-calibration“
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Stochastic Reliability Analysis

Summary

• Software Reliability can be adequately measured and predicted using 

appropriate models

• The use of stochastic reliability models requires some knowledge w.r.t. the 

underlying mathematics

• Appropriate tools are a precondition for the successful use of reliability models


