0101Seda010100

software engineering dependability

Safety and Reliability of Embedded Systems (Sicherheit und Zuverlässigkeit eingebetteter Systeme) Safety and Reliability Analysis Models: Overview

Content

- Classification
- Hazard and Operability Study (HAZOP)
- Preliminary Hazard Analysis (PHA)
- Event Tree Analysis
- Failure Modes Effects and Criticality Analysis (FMECA) (DIN 25448, IEC 812)
- Reliability Block Diagrams (IEC 61078)
- Fault Tree Analysis (DIN 25424, IEC 61025)
- Markov Analysis (IEC 61165)
 - Markov Chain
 - Markov Processes
- Petri Nets
 - Condition/Event Petri nets
 - State/Transition Petri nets
 - Predicate/Transistion Petri Nets / Coloured Petri Nets
 - Timed Petri Net Types
 - SPN
 - GSPN
 - DSPN

Safety and Reliability of Embedded Systems © Prof. Dr. Liggesmeyer

Classification of Safety / Reliability Analysis Techniques

- Focused Property
 - Safety, Reliability, Availability...
- Application Area
- Scope
 - Product / Process, HW / SW, System / Component
- Process Phase
- Search Direction
 - Inductive / Deductive
- Degree of Formality
- Representation
 - Textual, Graphical, Tabular
- Model based: Combinatorial vs. State-Based

Safety and Reliability of Embedded Systems © Prof. Dr. Liggesmeyer

Hazard and Operability Study (HAZOP)

- From chemical industry
- Find potential hazards at early process stage
- Check every "flow" in preliminary design scheme for deviations
- Manual search using guide-words (more, less, no, reverse...)
- Preliminary Hazard Analysis (PHA)
 - During requirements analysis or early design phase
 - Coarse identification, classification and counter-measures for potential hazards
 - Table representations

Safety and Reliability of Embedded Systems © Prof. Dr. Liggesmeyer software engineering dependability

- Forward-searching technique with graphical representation
- Search consequences to given hazard, depending on conditions

	Pressure Relief Valve 1	Pressure Relief Valve 2	
Pres <u>sure</u> Too High			No Hazard <i>p1-p1*p2</i>
p1	fails <i>p</i> 2	opens <i>1-p3</i>	No Hazard p1*p2-p1*p2*p3
		fails <i>p</i> 3	Hazard <i>p1*p2*p3</i>

- The Failure Mode, Effects and Criticality Analysis (FMECA) is a preventive method for the identification of problems, their risks and effects
- FMECA has the following goals
 - Detection of hazards and problems
 - Identification of potential risk
 - Quantification of risks
 - Determination of corrective measures
- FMECA can be performed as component FMECA (e.g. for a subsystem), as system FMECA (a complete system) or as process FMECA (e.g. for a development process)

software engineering dependability

FMECA is done in the following steps

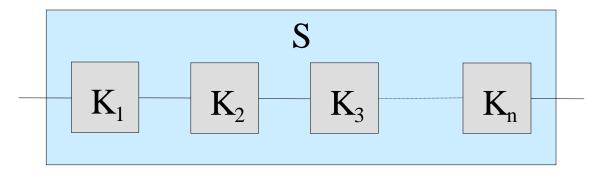
- Fault analysis: Collection of possible faults including available information about the type, causes and consequences
- · Risk evaluation with the aid of the risk priority number

RPN = occurrence probability * severity of consequences * probability of non-detection

- If for the three influencing factors a value between 1 and 10 is used (1= no risk, minor occurrence; 10 = high risk, high occurrence), the RPN is a value between 1 and 1000
- The risk priority number generates a ranking for the causes of faults
- Causes of faults with a high risk priority number are to be handled with priority

Safety and Reliability of Embedded Systems © Prof. Dr. Liggesmeyer

software engineering dependability



- Interconnection of all components of a system which are involved in performing the required function; represented as a flow chart
- RBDs distinguish only two states (intact/failed)
- Reliability function R(t)
 - F(t) gives the probability that at time t at least one failure has occurred; thus R(t) = 1 F(t) is the
 probability that at time t no failure has occurred yet

Reliability Block Diagrams Serial Connection

- n serial connected components ${\sf K}_{\sf i}.$ The system S fails if one of the components fails

$$R_{S}(t) = R_{K_{1}}(t) R_{K_{2}}(t) R_{K_{3}}(t) \dots R_{K_{n}}(t) = \prod_{i=1}^{n} R_{K_{i}}(t)$$

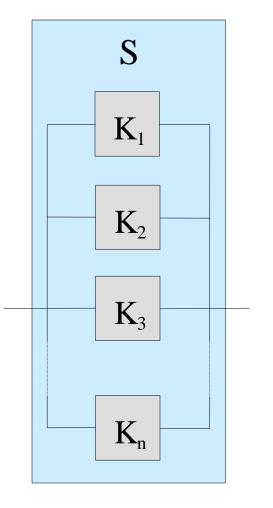
• Example:

Two components with $R_1 = R_2 = 0.8$: <u> $R_S = 0.64$ </u>

Safety and Reliability of Embedded Systems © Prof. Dr. Liggesmeyer

0101Seda010100

Reliability Block Diagrams Parallel Connection

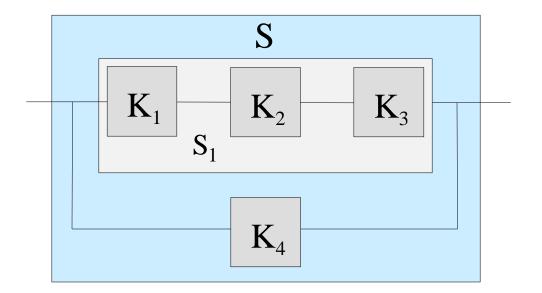

 n parallel connected components K_i. The system S fails if all components fail

$$F_{S}(t) = F_{K_{1}}(t) F_{K_{2}}(t) F_{K_{3}}(t) \dots F_{K_{n}}(t) = \prod_{i=1}^{n} F_{K_{i}}(t)$$

$$R_{S}(t) = 1 - F_{S}(t) = 1 - \prod_{i=1}^{n} F_{K_{i}}(t) = 1 - \prod_{i=1}^{n} (1 - R_{K_{i}}(t))$$

• Example:

Two components with $R_1 = R_2 = 0.8$: <u> $R_S = 0.96$ </u>



Reliability Block Diagrams Combined Serial/Parallel Connection

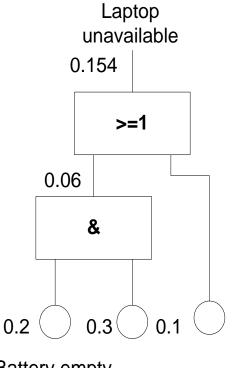
• Combinations of serial and parallel connections can be solved hierarchically

Safety and Reliability of Embedded Systems © Prof. Dr. Liggesmeyer

software engineering dependability

• Example:

System S is a parallel connection of the subsystem S_1 with component K_4 The reliability of the subsystem S_1 is: $R_{S_1}(t) = R_{K_1}(t) R_{K_2}(t) R_{K_3}(t)$


The reliability of the system S is: $R_{s}(t) = 1 - [(1 - R_{\kappa_{4}}(t)) (1 - R_{s_{1}}(t))]$ $= 1 - [(1 - R_{\kappa_{4}}(t)) (1 - R_{\kappa_{1}}(t) R_{\kappa_{2}}(t) R_{\kappa_{3}}(t))]$

All components have the reliability R = 0,8: $R_s = 0.9024$

Fault Tree Analysis

Battery empty Hardware No socket around

- Analysis method for the qualitative and quantitative evaluation of a *specific* failure of a system
- Deductive (backward searching)
- Graphical and intuitive technique
- Based on Boolean logic and combinatorics
- Widely accepted, captured in standards / handbooks
- Has been used and extended since 1961

Safety and Reliability of Embedded Systems © Prof. Dr. Liggesmeyer

Markov Analysis

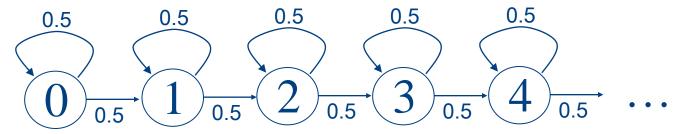
- Markov Analysis
 - Markov Chain
 - Markov Processes

• Petri Nets

- Condition/Event Petri nets
- State/Transition Petri nets
- Predicate/Transistion Petri Nets / Coloured Petri Nets
- Timed Petri Net Types
 - SPN
 - GSPN
 - DSPN

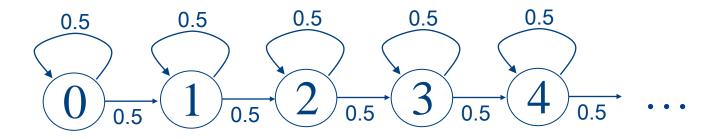
14

Safety and Reliability of Embedded Systems © Prof. Dr. Liggesmeyer

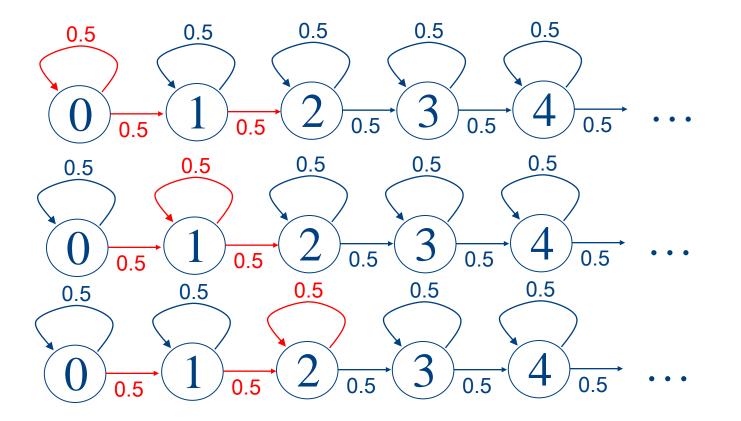


- Markov models are based on a description of the system behavior with state machines
- Common assumption of all Markov Models: The probability of the next state depends on the current state; it is independent from previous states, i.e. Markov models do not take into account the history
- Various Model types, e.g.:
 - Discrete time models (Markov chain)
 - Continuous time models; also called Markov processes

- Markov chains assume that state changes occur at discrete points in time
- Example: Throwing a coin *n* times and counting the results where we got the "front side" as the result of this experiment
- Obviously this can be modeled with the following Markov chain:


• If the current state is *i* then the probabilities to stay at state *i* or to enter state (*i*+1) are both 0.5. A state change may only occur at the discrete point in time, when the coin is thrown.

Safety and Reliability of Embedded Systems © Prof. Dr. Liggesmeyer


- What is the probably for 2 "front sides" after throwing the coin twice?
- Answer: There is one path of length 2, that leads into state 2, associated with probability (0.5 * 0.5) = 0.25

Safety and Reliability of Embedded Systems © Prof. Dr. Liggesmeyer

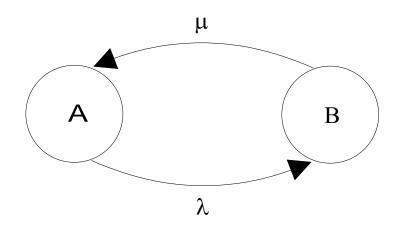
- What is the probably for 2 "front sides" after throwing the coin three times?
- Answer: There are the following paths of length 3, that lead into state 2

Safety and Reliability of Embedded Systems © Prof. Dr. Liggesmeyer software engineering dependability

18

TECHNISCHE UNIVERSITÄT

- Each of the three paths has probability (0.5 * 0.5 * 0.5) = 0.125
- The probability for 2 "front sides" after throwing the coin three times is 3 * 0.125 = 0.375



Safety and Reliability of Embedded Systems © Prof. Dr. Liggesmeyer

Markov Processes

- Markov processes are continuous time models
- Example
 - A system with failure rate λ and repair rate μ is to be analyzed with the aid of a Markov model. The Markov model has the states A and B
 - A is the state where the system is intact. B is the state where the system failed
 - The system changes with the failure rate λ from the intact state into the failed state.
 With the repair rate μ it changes from the failed state into the intact operation

Safety and Reliability of Embedded Systems © Prof. Dr. Liggesmeyer

$$\frac{dP_A(t)}{dt} = -\lambda P_A(t) + \mu P_B(t)$$

$$\frac{dP_B(t)}{dt} = \lambda P_A(t) - \mu P_B(t) = -\frac{dP_A(t)}{dt}$$

$$P_A(t) + P_B(t) = 1$$

$$P_A(t) = \frac{\mu}{\mu + \lambda} + (c - \frac{\mu}{\mu + \lambda}) e^{-(\mu + \lambda)t}$$

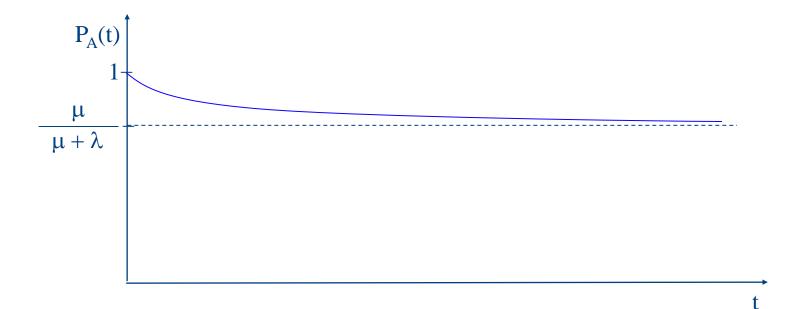
$$P_B(t) = 1 - P_A(t) = 1 - [\frac{\mu}{\mu + \lambda} + (c - \frac{\mu}{\mu + \lambda}) e^{-(\mu + \lambda)t}]$$

0101Seda010100

Safety and Reliability of Embedded Systems © Prof. Dr. Liggesmeyer software engineering dependability

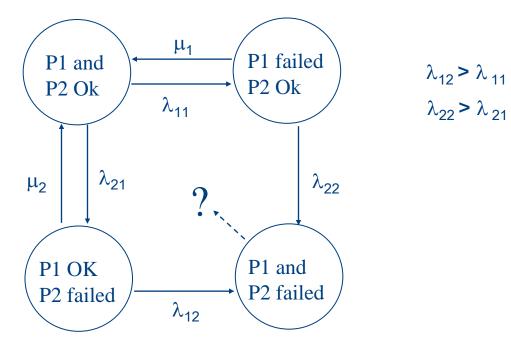
• For t towards infinite one gets the steady state of the system

$$\lim_{t \to \infty} \mathsf{P}_{\mathsf{A}}(t) = \frac{\mu}{\mu + \lambda}$$


$$\lim_{t \to \infty} \mathsf{P}_{\mathsf{B}}(t) = 1 - \frac{\mu}{\mu + \lambda}$$

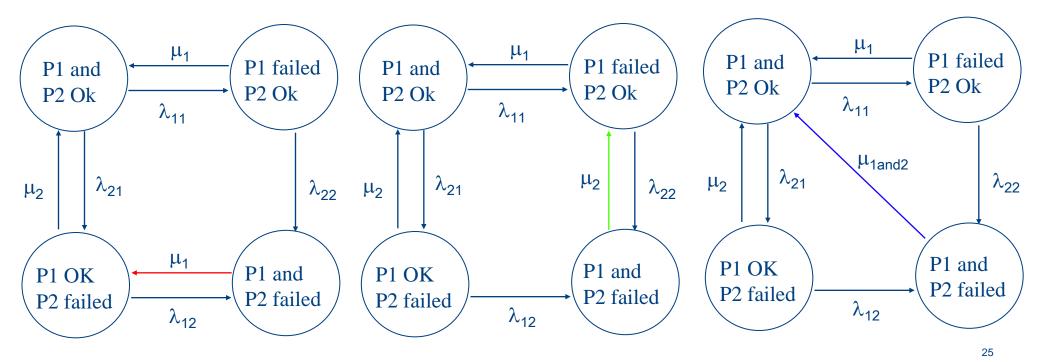
- If the repair rate is high compared to the failure rate the probability that the system is intact approaches 1
- If the repair rate is low compared to the failure rate the probability that the system is intact approaches zero

Markov Processes


23

Safety and Reliability of Embedded Systems © Prof. Dr. Liggesmeyer

 Let's assume we have to model a system that uses two pumps to pump water to a higher level. In normal operating mode each pump runs at 50% of its maximum power. The remaining pumps takes over the complete load, if one pump fails and thus gets additional stress, which increases its failure probability. How could that be modeled?



Safety and Reliability of Embedded Systems © Prof. Dr. Liggesmeyer

Markov Processes

- Alternative repair strategies when both pumps have failed:
 - Repair P1 then switch on again,
 - Repair P2 then switch on again,
 - Repair P1 and P2 and then switch on again.

Safety and Reliability of Embedded Systems © Prof. Dr. Liggesmeyer

Petri Nets

• Petri Nets

- Condition/Event Petri nets
- State/Transition Petri nets
- Predicate/Transistion Petri Nets / Coloured Petri Nets
- Timed Petri Net Types
 - SPN
 - GSPN
 - DSPN

Safety and Reliability of Embedded Systems © Prof. Dr. Liggesmeyer

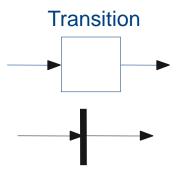
- The concept of Petri nets has its origin in Carl Adam Petri's dissertation *Kommunikation mit Automaten*, submitted in 1962 to the faculty of Mathematics and Physics at the Technische Universität Darmstadt, Germany
- Various Petri net types, e.g.:
 - Condition/Event Petri nets
 - State/Transition Petri nets
 - Predicate/Transistion Petri Nets / Coloured Petri Nets
 - Timed Petri Net Types
 - Stochastic delay
 - No delay
 - Deterministic delay

- A Petri Net N contains at least *places* (P), *transitions* (T) and a *flow relation* (F) as well as an initial marking (M_0) : N = (P, T, F, M₀):
- $P \cap T = \emptyset$
- $F \subseteq (P \times T) \cup (T \times P)$
- $M_0: P \rightarrow IN_0$

- State elements hold either one or no token
 - state elements represent conditions, which can be true or false
 - transition elements are represent local events
- Event is enabled if and only if
 - all its pre-conditions (connected by incoming arcs) are true
 - all its post-conditions (connected by outgoing arcs) are false
- An event occurrence negates its pre- and post-conditions
- Events with overlapping pre-conditions are in conflict
- Events with overlapping post-conditions are in contact

Petri Nets - Condition / Event Petri Nets Fundamentals

Petri nets

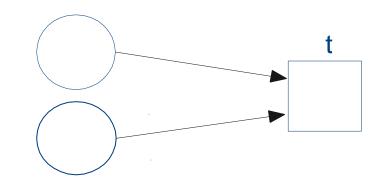

- Directed graph, which consists of two different kinds of nodes:
 - Places and Transitions

Places

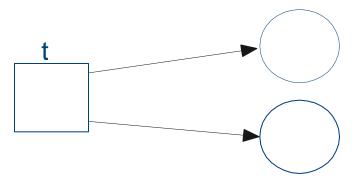
represent a clipboard of information

Transitions describe the processing of information

30


Safety and Reliability of Embedded Systems © Prof. Dr. Liggesmeyer

Petri Nets - Condition / Event Petri Nets Fundamentals



- Semantic
 - Arcs are only allowed between a node and the other kind of node.
 - Places from which arcs run to a transition t are called Input Places of t
 - Places to which arcs run from a transition t are called Output Places of t.

Input places of t

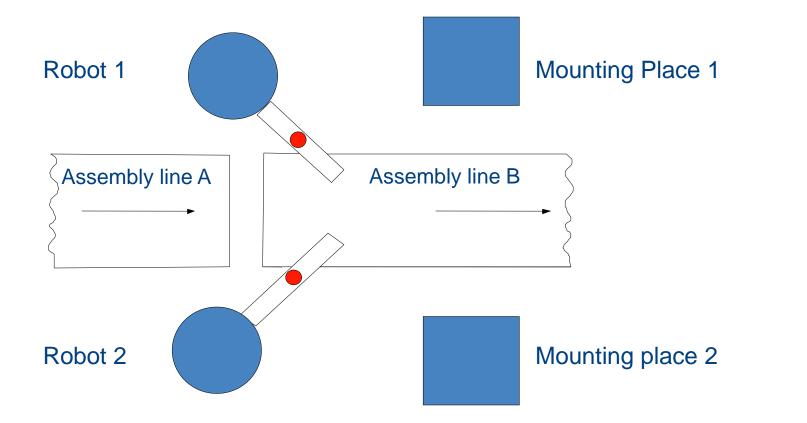
Output places of t

Safety and Reliability of Embedded Systems © Prof. Dr. Liggesmeyer

Petri Nets - Condition / Event Petri Nets

C/E Net

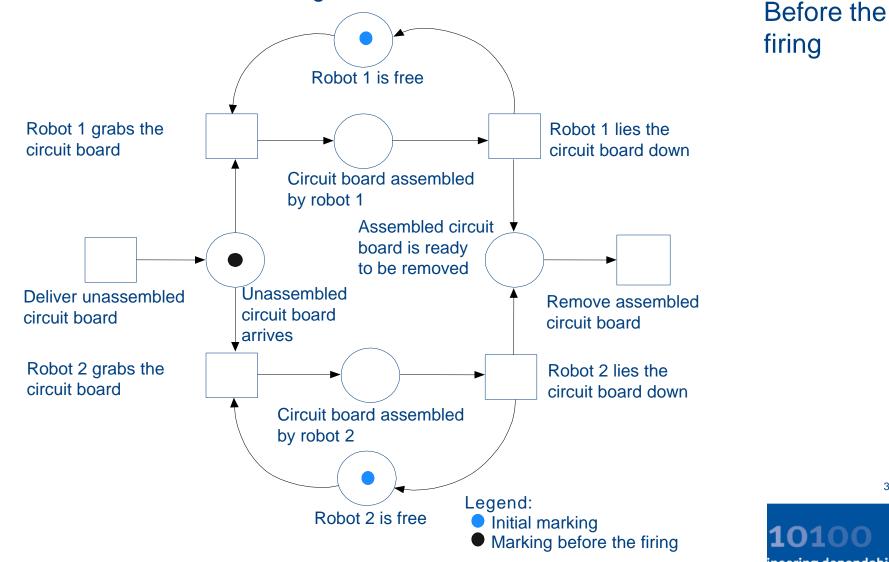
- Objects, respectively tokens, are of **Boolean** data type
- Transitions are interpreted as Events
- Places are denoted as Conditions
- Each place is allowed to receive exactly one or no token.
- Additional firing condition:
- C A transition t can fire if each input space of t contains one token and if each output space of t is empty. When it fires, the token in each input space will be consumed respectively. One token will be assigned to each output space.



Safety and Reliability of Embedded Systems © Prof. Dr. Liggesmeyer

Petri Nets - Condition / Event Petri Nets Example

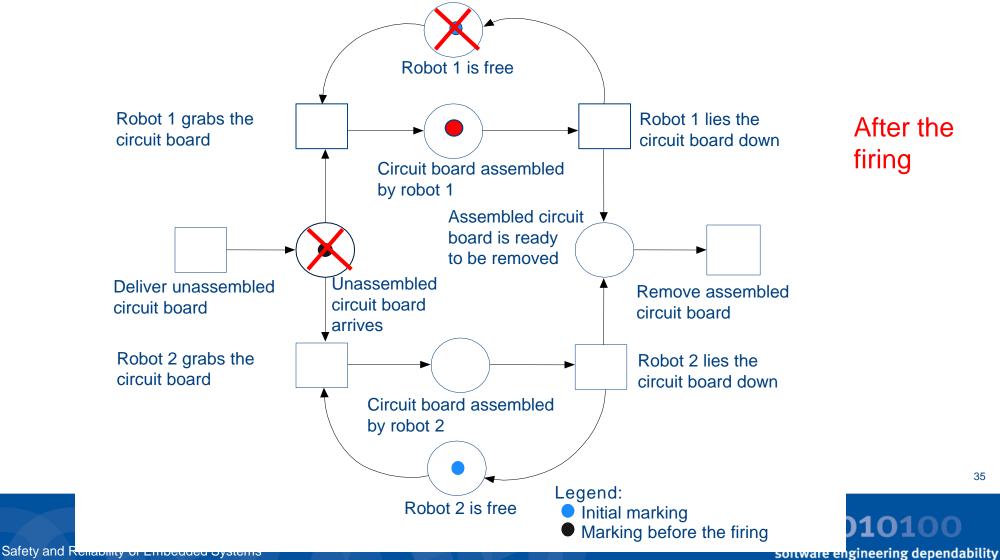
- Example
 - 2 Robots assemble circuit boards with electronic devices, which are delivered on an assembly line A.


Safety and Reliability of Embedded Systems © Prof. Dr. Liggesmeyer 33

0101Seda010100

Petri Nets - Condition / Event Petri Nets Example

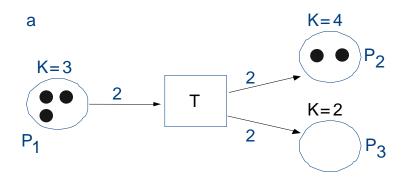
TECHNISCHE UNIVERSITÄT KAISERSLAUTERN


C/E Net of the assembling robot

Petri Nets - Condition / Event Petri Nets Condition/Event Net: Example

C/E Net of the assembling robot

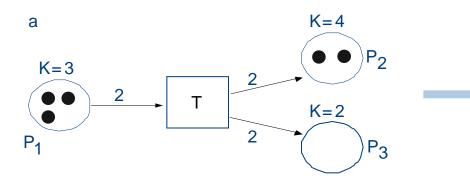
© Prof. Dr. Liggesmeyer


- P/T Nets (P/T Net, Place/Transition Net)
 - Places can obtain more than one token (in C/E nets only one token)
 - Transitions must release or add as many tokens when firing as the **weights** that are given on the arrows. (in C/E nets only one token)
 - If the capacity of a place is to be bigger than 1, this will be denoted as ***K** = ... « at the place.
 - The capacity defines the maximum number of tokens that may lie in one place.

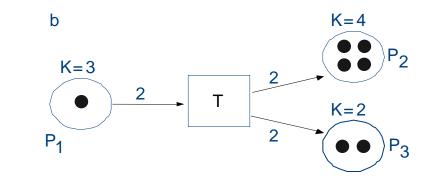
Petri Nets Place/Transition Nets

• Firing with P/T Nets

- Before the firing
 - \bigcirc P₁: **3** Tokens
 - \bigcirc P₂: **2** Tokens
 - \bigcirc in P₃: no Token.



Safety and Reliability of Embedded Systems © Prof. Dr. Liggesmeyer

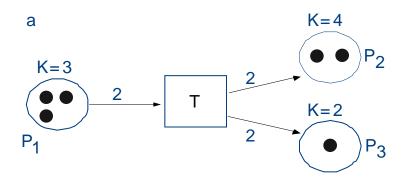

Petri Nets Place/Transition Nets

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

• Firing with P/T Nets

- Before the firing
 - \bigcirc P₁: **3** Tokens
 - \bigcirc P₂: 2 Tokens
 - in P_3 : no Token.

- After the firing
 - \bigcirc P₁: **1** Token
 - \bigcirc P₂: 4 Tokens
 - in P_3 : 2 Tokens.

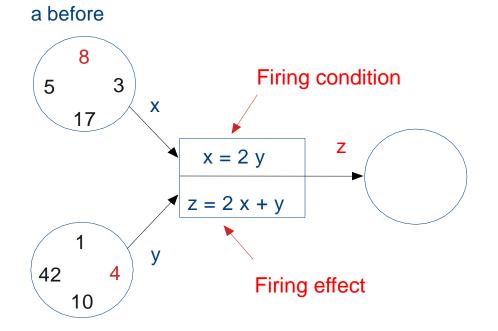


Safety and Reliability of Embedded Systems © Prof. Dr. Liggesmeyer

Petri Nets Place/Transition Nets

• Firing conditions in P/T Nets

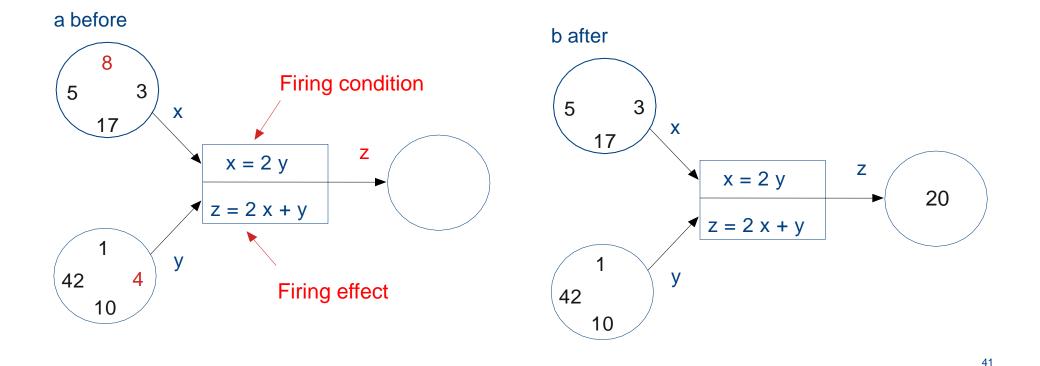
- T cannot fire because 3 Tokens would then lay in P_3
 - This is not allowed due to K = 2 of P_3 .



Safety and Reliability of Embedded Systems © Prof. Dr. Liggesmeyer

Petri Nets Predicate/Transition Nets

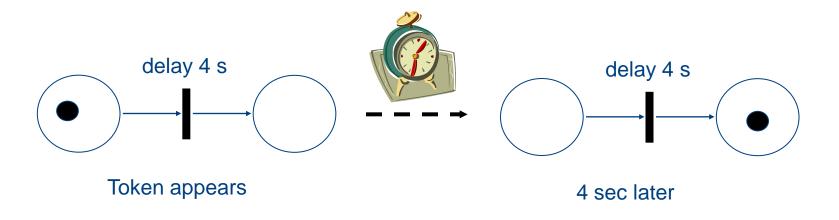
- Pr/T Nets
 - Apply individual, »colored« tokens
 - C/E and P/T Nets apply only **»black**« tokens, which are all the same



Safety and Reliability of Embedded Systems © Prof. Dr. Liggesmeyer 0101Sed a010100 software engineering dependability

Petri Nets Predicate/Transition Nets

- Pr/T Nets
 - Use individual, »colored« tokens
 - C/E and P/T Nets use only **»black**« tokens, which are all the same



0101Seda010100

Safety and Reliability of Embedded Systems © Prof. Dr. Liggesmeyer

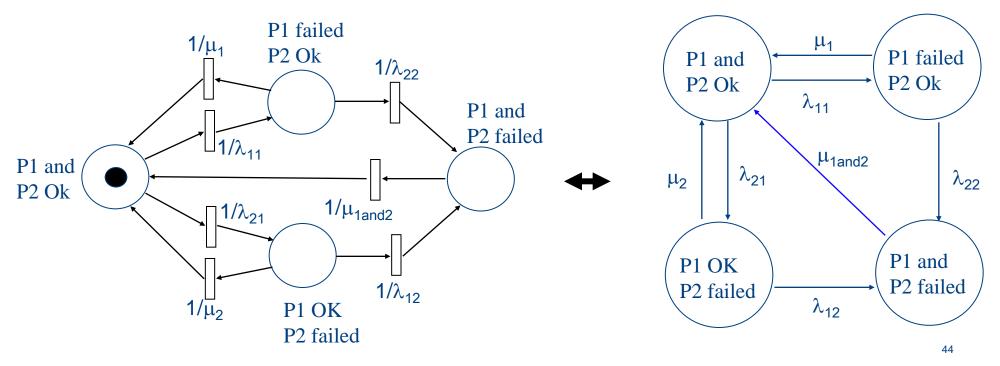
Petri Nets Timed Petri Net Types: Simple approach

- To study performance and dependability issues of systems it is necessary to include a timing concept into the model.
- There are several possibilities to do this for a Petri net; however, the most common way is to associate a *firing delay* with each transition. This delay specifies the time that the transition has to be *enabled*, before it can actually fire:

Safety and Reliability of Embedded Systems © Prof. Dr. Liggesmeyer

SPN (Stochastic Petri Net)

- If the delay is a random distribution function (exponential distribution), the resulting net class is called *stochastic Petri net*.
- GSPN (Generalised stochastic Petri Net)
- SPN plus *immediate transitions* (no delay) and inhibit edges.
 DSPN
- GSPN plus deterministic transitions (delay is fixed).

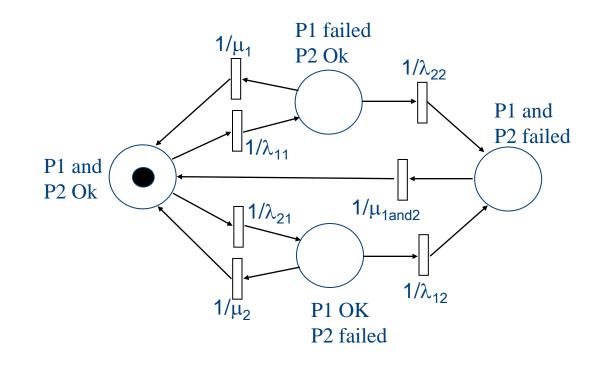


Safety and Reliability of Embedded Systems © Prof. Dr. Liggesmeyer

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

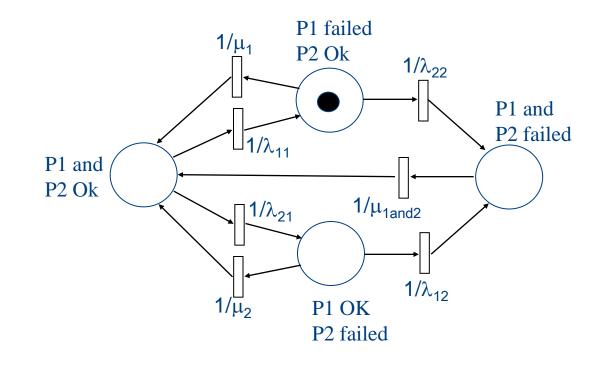
SPN (Stochastic Petri Net)

- Delay is exponentially distributed
- Can be transformed into an equivalent Markov Process



0101Seda010100

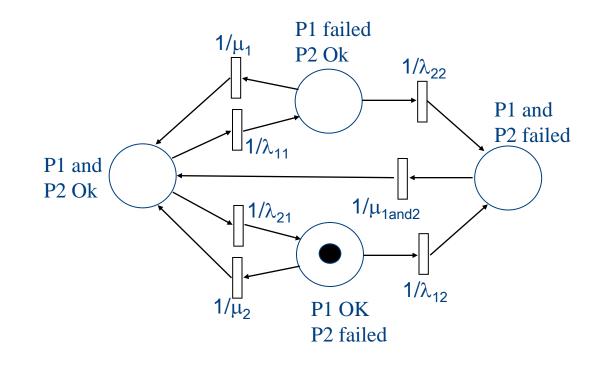
Safety and Reliability of Embedded Systems © Prof. Dr. Liggesmeyer


Possible markings: Initial

Safety and Reliability of Embedded Systems © Prof. Dr. Liggesmeyer 0101Sed a 010100 software engineering dependability

Petri Nets Timed Petri Net Types (SPN)

Safety and Reliability of Embedded Systems © Prof. Dr. Liggesmeyer


software engineering dependability

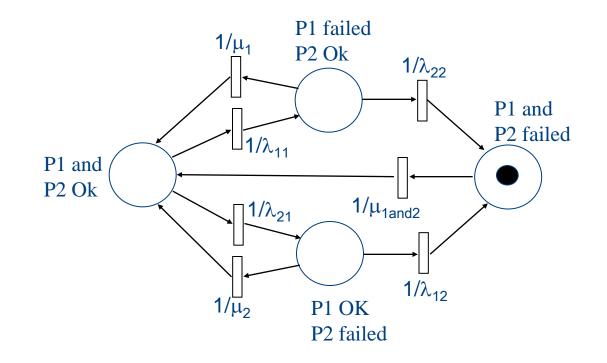
0101Seda010100

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Petri Nets Timed Petri Net Types (SPN)

Safety and Reliability of Embedded Systems © Prof. Dr. Liggesmeyer

software engineering dependability


0101Seda010100

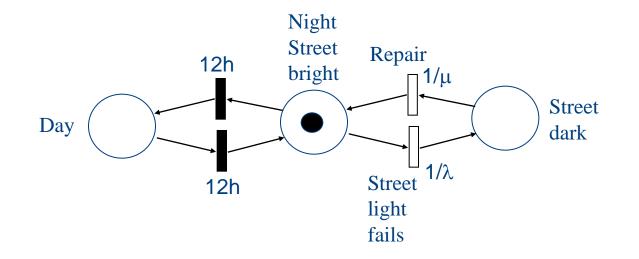
47

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Petri Nets Timed Petri Net Types (SPN)

Possible markings: Both failed

Safety and Reliability of Embedded Systems © Prof. Dr. Liggesmeyer


software engineering dependability

0101Seda010100

48

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN DSPN (Deterministic Stochastic Petri Net)

• Exponentially distributed delay + *immediate transitions* (no delay) + *deterministic transitions* (delay is fixed) and inhibit arcs

Safety and Reliability of Embedded Systems © Prof. Dr. Liggesmeyer

0101Seda010100

49

ECHNISCHE UNIVERSITÄT

- Liggesmeyer 2000, Qualitätssicherung softwareintensiver technischer Systeme, Heidelberg: Spektrum-Verlag 2000
- DIN 25424; DIN 25424-1, Fehlerbaumanalyse Methoden und Bildzeichen, September 1981; DIN 25424-2: Fehlerbaumanalyse Handrechenverfahren zur Auswertung eines Fehlerbaumes, April 1990; Berlin: Beuth Verlag
- DIN 25448, Ausfalleffektanalyse (Fehler-Möglichkeits- und -Einfluß-Analyse), Berlin: Beuth Verlag, Mai 1990
- IEC 812, Analysis Techniques for System Reliability Procedure for Failure Mode and Effect Analysis (FMEA), International Electrotechnical Commission 1985
- IEC 61025, Fault tree analysis (FTA), International Electrotechnical Commission 1990
- IEC 61078, Analysis techniques for dependability Reliability block diagram method, International Electrotechnical Commission 1991
- IEC 61165, Application of Markov techniques, International Electrotechnical Commission 1995

software engineering dependability

0100

0101Seda