
 Prof. Dr. Liggesmeyer, 1
QMSS - Reuse

Quality Management of Software and 
Systems 

Reuse

 Prof. Dr. Liggesmeyer, 2
QMSS - Reuse

Contents

Problems

Reusability and Reuse

Technique 

Organization 

Management 

Costs and Benefits of Reuse

Implementing Reuse



 Prof. Dr. Liggesmeyer, 3
QMSS - Reuse

Problems

Problems
Normally, each software development reinvents the wheel several times

This luxury cannot be afforded be afforded any longer

/Weber 92/
The reusability of concepts, products, and procedures is the key concept 
of advanced industries

Implementing reusability aims for cost reduction and quality improvement 
of products

Not using existing products as components or not estimating market 
opportunities for products and components before development is 
industrial stone age

 Prof. Dr. Liggesmeyer, 4
QMSS - Reuse

Problems

»Golden Rule of Reusability:
Before you can reuse something, you need to

1st find it

2nd know what it does

3rd know how to reuse it.«



 Prof. Dr. Liggesmeyer, 5
QMSS - Reuse

Problems

Goals of reuse
Significant improvement of productivity

Quality improvement

Reducing development time

Cost rediction

 Prof. Dr. Liggesmeyer, 6
QMSS - Reuse

Reusability and Reuse

Reusability
Development and provision of reusable software

Reuse
Operation of reusable software

Highly reusable software components ease the reuse of these 
components

Precondition: Optimal collaboration of
Technique

Organization

Management



 Prof. Dr. Liggesmeyer, 7
QMSS - Reuse

Reusability and Reuse

Planned vs. unplanned Reuse

Reuse

Planned Unplanned

Reusability Reconstruction

Reverse Engineering Reengineering

 Prof. Dr. Liggesmeyer, 8
QMSS - Reuse

Reusability and Reuse

Today: Unplanned reuse
Existing software systems

- Have to be redesigned due to additional requirements or changed 
hardware/software platforms

Original systems

- Not designed for reuse in other contexts

Usage of Reverse Engineering, Reengineering and Reconstruction

- To identify and prepare software components for reuse



 Prof. Dr. Liggesmeyer, 9
QMSS - Reuse

Reusability and Reuse

Planned reuse
Design software components in the first place in a way that they can be 
easily reused

Good reusability imply a software component to be

- Highly generic

- High quality

- Well documented

Software component

- Each explicit, physical existent development result

- Each result, offering easy solutions for later projects

 Prof. Dr. Liggesmeyer, 10
QMSS - Reuse

Product A

Reusability and Reuse

Four types of reusability

Product A, Version 1 Product A, Version 2

Product A Product B

Inter-version Reuse

Inter-product reuse

Reuse on variants

Base product A

Product A, Variant 1

Product A, Variant 2

Subsystem X Subsystem Y

Intra-product reuse

Key

Reused component



 Prof. Dr. Liggesmeyer, 11
QMSS - Reuse

Reusability and Reuse

Reuse on versions and variants
Already good understood

Especially, using object-orientation

Intra- and inter-product reuse
Hardly seen

Layers of reusability
Product definition

Product design

Product Implementation

- Nowadays: Reuse of code components is prevalent

 Prof. Dr. Liggesmeyer, 12
QMSS - Reuse

Reusability and Reuse

Differentiation by application domain
Vertical differentiation

- Within the same domain

Horizontal differentiation

- In different domains

• Example: Libraries with scientific routines

• Example: Libraries with base classes

Types of reuse

white-box-reuse

- The developer modifies, adapts, and tests the reused components

black-box-reuse

- The reused components are not changed



 Prof. Dr. Liggesmeyer, 13
QMSS - Reuse

Technique

Reuse with respect to the layer of abstraction
Functional abstraction 
(functions, procedures, methods)

Data abstraction 
(abstract data objects and abstract data types)

Classes using inheritance and polymorphism

Additionally, all three abstraction in a generic way (except abstract data 
objects)

 Prof. Dr. Liggesmeyer, 14
QMSS - Reuse

Technique

Functional abstraction
+ Suitable for specific application domains, e.g. mathematical libraries

– Low layer of abstraction

– Functional perspective not broad enough

– Separation of value, state, and processing

– Inflexible parameter mechanism

– Only some programming languages support generic functional abstraction



 Prof. Dr. Liggesmeyer, 15
QMSS - Reuse

Technique

Data abstraction
Attributes and operations aggregated to one unit (encapsulation and 
information hiding)

Removes disadvantages of functional abstraction

+ Suitable for many different application domains, especially for 
fundamental data structures (e.g. stack, queue, list, etc.) 

+ Highly generic and good adaptability through type parameterization

+ Easily understandable

– Applicable only with strongly typed languages

– Not as generic as inheritance

 Prof. Dr. Liggesmeyer, 16
QMSS - Reuse

Technique

Data abstraction
Comprehensive reusable libraries despite the disadvantages

Example: Ada-Library by /Booch 87/

Many class libraries do not use inheritance, but use only options given by 
generic class concepts

Object-oriented components
Best options to achieve high reusability

Depends on the proper usage of options

Wrong usage may decrease reusability



 Prof. Dr. Liggesmeyer, 17
QMSS - Reuse

Technique

Object-oriented components
+ Inheritance permits specialization, super class can be reused as it is 

(black-box-reuse)

+ Adding additional features with little new code

– For the most part system inherent complexity shifts to system dynamics

– Deep inheritance structures are hard to control

Reusability in larger units
Frameworks

Analysis and design patterns

Componentware

 Prof. Dr. Liggesmeyer, 18
QMSS - Reuse

Organization

Reuse
Not automatically through the use of appropriate technique

Must be organized

Organization must include
Development, installation, and operation of a reusability repository

Evolutionary advancement of reuse

Including reuse in process model



 Prof. Dr. Liggesmeyer, 19
QMSS - Reuse

Organization

Reusability repository
Today, reuse often fails, because existing components cannot be found in 
a fast, easy, and sure way

Example

- Software developer wants to reuse software

- Question to colleagues for relevant developments

- Remembrance of a similar problem two years ago in another project

- Reference to a certain file within the streamer backup of the project

- Search for the streamer within the archive

 Prof. Dr. Liggesmeyer, 20
QMSS - Reuse

Organization

- File with similar name found after a long search

- Only source code with comments, without further documentation

- Needed compiler version cannot be obtained

- Depressed, the developer starts implementing an own solution: the 
wheel is reinvented

Requirements: reusability repository
Project independent

Easily accessible

Each employee needs access at any time directly from his desktop



 Prof. Dr. Liggesmeyer, 21
QMSS - Reuse

Organization

Reusability repository concept

Projekt C Projekt B

Projekt AZeit

Spezialisiertes
Information Retrieval
System

Definition

Entwurf

Implementierung

Abnahme & Einf.

Wartung & Pflege

Archiv–
verwalter

Wiederverwendbare
Komponenten oder
Teilsysteme

 Prof. Dr. Liggesmeyer, 22
QMSS - Reuse

Organization

Reusability repository can be

- Independent repository

• With or without connections to a CASE environment

- Integrated in a reuse oriented CASE environment

Retrievability must be constructed

- Reusable components and subsystems must be classified

Classification

- Research: Many classification systems for storing and retrieving
reusable components

- Important method: facet classification



 Prof. Dr. Liggesmeyer, 23
QMSS - Reuse

Organization

Services of a repository administration
Development of classification systems

Classification and retrieving components and subsystems

Export of components to other management systems

Imports from other systems

Documentations about classification systems and classified components

Saves not only links to sources, but sources itself

- E.g., if an OOA-model is found, the graphical representation must be 
accessible

 Prof. Dr. Liggesmeyer, 24
QMSS - Reuse

Organization

Requirements for reuse-oriented CASE environments
Support for assembling applications from components

black-box-reuse 

- Management of an “use”-relation between component and using 
application

• Changes at the component can be communicated to all 
applications using the component

white-box-reuse

- Additionally, each application must be able to derive and enhance 
their own version from the original component

• Application needs test environment (i.e., test scope, test cases, 
test protocols) of the component



 Prof. Dr. Liggesmeyer, 25
QMSS - Reuse

Organization

Online management of all results from all tools during the whole
development cycle

- All results need to be manipulable with all their relations

Configuration and change management of the reusable components

 Prof. Dr. Liggesmeyer, 26
QMSS - Reuse

Organization
Maturity levels of reuse

Level 1: Ad hoc-reuse
Unsystematic reuse

- Occasional, dependent on the project staff’s work style, 
uncoordinated, normally undocumented

- Rule: copy, adapt, divergence

- Combined versioning with the original does not occur

Multiple maintenance and bugfixing

Better part of today's reuse is in this way

Better than no reuse

Simple, with only short-term benefit

- Benefit compensates if too many undocumented copies circulate 
uncontrolled, leading to unmaintainable software



 Prof. Dr. Liggesmeyer, 27
QMSS - Reuse

Organization
Maturity levels of reuse

Level 2: Reuse of available software
Systematized through implementation of appropriate arrangements

Basis for the development of reusable components were established

Available and reusable software must be collected and documented in a 
structured way

System parts with different change frequencies are localized

- Variants and versions of correspondent systems can be developed 
more efficiently

Acquisition of market-available software based on the process

- Specifically, software development oriented

Development of modular software systems

- Basis for the reuse of system components

Commercially available and internal standards are met

- Portable systems

 Prof. Dr. Liggesmeyer, 28
QMSS - Reuse

Organization
Maturity levels of reuse

Level 3: Development for reuse
Domain-oriented software development

Establish appropriate infrastructure for reuse-oriented development

Develop software components

- Not with respect to the current application

- But with respect to the future applications

Reusable software components were developed incrementally as 
subassemblies



 Prof. Dr. Liggesmeyer, 29
QMSS - Reuse

Organization
Maturity levels of reuse

Functionality of such software can be enhanced without changing the 
original source code

Incrementally extendable software eases the development of versions and 
variants

Development of subassemblies project independently or separated of 
domain specific projects

Subassemblies based on an application domain analysis

- Goal: domain model, describing a generic and therefore reusable 
architecture for products of the application domain

 Prof. Dr. Liggesmeyer, 30
QMSS - Reuse

Organization
Maturity levels of reuse

Additional necessary activities

- Establish a reusability repository

- Arrange reusability related trainings

- Creation of an appropriate in-house communication structure (e.g., 
Bulletin Boards)

- Provision of standards for selection, evaluation, and adaptation of 
components



 Prof. Dr. Liggesmeyer, 31
QMSS - Reuse

Organization
Maturity levels of reuse

Level 4: Usage of domain models and statistical process control
Application development using domain models

Control of reuse-oriented software development based on statistics

Provide a domain model for each well defined application domain

- The model should describe a generic and therefore reusable 
architecture for products in the application domain

Domain analysis permits integration to software development processes

 Prof. Dr. Liggesmeyer, 32
QMSS - Reuse

Organization
Maturity levels of reuse

Each domain model consist of

- Architecture

- Integrated components and subassemblies including self developed
and commercially available components

Focal point of software development

- Application modeling

- Not programming

Applications development through assembly of subassemblies

Application developer develops only application specific parts



 Prof. Dr. Liggesmeyer, 33
QMSS - Reuse

Organization
Maturity levels of reuse

Additional activities

- Implementing life cycle for development, certification, and usage of 
components

- Establish reusability-oriented CASE environments

- Project progress statistically controlled by characteristics and
cost/benefit models

• Characteristics calculated from measurements

 Prof. Dr. Liggesmeyer, 34
QMSS - Reuse

Organization
Maturity levels of reuse

Level 5: Organization wide reuse orientation
All division activities completely reuse oriented

Alike level 4, applications are developed by assembling existing and 
widely standardized subassemblies

New: Divisions that do not develop software, act reuse oriented

All sales activities with available components in mind

Each software component is considered company asset

Amount of assets and life cycle length incorporated in

- Decisions for software development

- Strategic decisions of the company management



 Prof. Dr. Liggesmeyer, 35
QMSS - Reuse

Organization
Maturity levels of reuse

Reuse levels

80 – 100 %

50 – 70 %

30 – 40 %

10 – 50 %

< 20 %

Reuse in percentLevel Requirements

1 No or ad-hoc reuse

2 Exploit existing applications

3 Planned reuse

4 Consistent reuse

5 Domain-based reuse

No organizational changes

Luck and maintenance problems

Approval and support of management, 
motivation programs, libraries

Libraries, processes, metrics, training

Domain analysis and architectures

 Prof. Dr. Liggesmeyer, 36
QMSS - Reuse

Organization

3 level maturity model
Practical experience with financial and assurance domain

Level I: Maintainability

- Reuse within a single project

Level II: Balance

- Reuse between similar projects

Level III: Standardizing

- Basis for domain comprehensive reuse



 Prof. Dr. Liggesmeyer, 37
QMSS - Reuse

Organization

Reuse-oriented process model
Necessary requirement to establish reuse

All development phases

- Adequate components are searched

- New reusable components were classified and put into the repository

Reusable components applicable in

- Definition phase

- Design phase

- Implementation phase

Developed intern or obtained from extern

 Prof. Dr. Liggesmeyer, 38
QMSS - Reuse

Organization

Constant observation of software market needed

Task for buying components

- Specifying of all today's and future requirements for the own 
application

- Examination

• Components sufficiently parameterized in order to adapt to 
changing requirements

• Can the components be evaluated, adapted, and maintained by 
CASE- and Reengineering-tools

• Clarification of legal aspects of the components usage



 Prof. Dr. Liggesmeyer, 39
QMSS - Reuse

Management

Change of management tasks
Software manager has to develop a software product

Today

- Crucial question: »How can I solve the problem with my available 
resources?«

Prognosis

- Crucial question: »Where has somebody solved a similar problem, 
and how can I obtain the solution?«

Main management task in the future

- Ensure reusability of components

 Prof. Dr. Liggesmeyer, 40
QMSS - Reuse

Management

Reusability
Today not primary a technical problem

Organizational and management problem

Who decides today to reuse software, can start tomorrow

Culture of reusability
Task of software management

- Provide an adequate organizational environment

- Establishing of a culture of reusability



 Prof. Dr. Liggesmeyer, 41
QMSS - Reuse

Management

Example

- Employee develops software component during project

- During the development he has ideas to generalize the component 
for the usage in other contexts

- Under high deadline pressure, only a project specific solution is 
developed

- Scenario shows

• In nearly all software companies the appeal to develop generic 
solutions is missing

- Thus: Development of bonus systems for

• Provide reusable components

• Reuse of such components

 Prof. Dr. Liggesmeyer, 42
QMSS - Reuse

Management

Example

- Nippon Novel pays each software developer 5 Cent per line of code, 
if he puts a component in the repository or reuses a component

- Additionally, the developer of a reusable component gets 1 Cent per 
line of code for each reuse

Management has to answer the following questions

- Who pays for the development of a reusable component?

- Who is responsible for maintenance?

- What is the gain of providing a reusable component?



 Prof. Dr. Liggesmeyer, 43
QMSS - Reuse

Costs and Benefits of Reuse

Qualitative statements
Rule of thumb: »Formula 3«

- Software has to be developed three times until it can be developed 
for reuse

- Not until the software is reused three times can the reuse yield fruit

Break-even at approximately three reuses of a component specifically 
developed for reuse

Afterwards, the 30-50% higher development costs can be earned

 Prof. Dr. Liggesmeyer, 44
QMSS - Reuse

Costs and Benefits of Reuse

60% higher development costs

- 25% for additional generalization

• E.g., parameterization, design, review

- 15% for additional documentation

- 10% for additional testing

- 5% for repository and maintenance



 Prof. Dr. Liggesmeyer, 45
QMSS - Reuse

Costs and Benefits of Reuse

Reuse and productivity

- Examined were three real applications, consisting of 10,000 line of 
COBOL-Code

0% 25% 50%
Total time in MM 81,5 45 32
Number of Employees 8 6 5
Costs per LOC 40,74 22,5 16
LOC per MM 165 263 370
Savings 0% 45% 61%

 Prof. Dr. Liggesmeyer, 46
QMSS - Reuse

Costs and Benefits of Reuse

Reuse and productivity

- Examined were Objective-C programs consisting of 20,000-30,000 
LOC

Cost/Benefit ratio for class libraries
Library supply has serious impact on the cost/benefit ratio

If no library classes are available at the start, the cost/benefit ratio is <1 
not until the 3rd project

0% 10% 30% 50% 80%
Total time in MM 200 176 131 89 33
Savings 0% 12% 34% 56% 84%



 Prof. Dr. Liggesmeyer, 47
QMSS - Reuse

Costs and Benefits of Reuse

Benefit prevails after the sixth project has finished, if

- Library size, starting with ten classes, continually increases and

- Development costs for reusable classes are twice as high as for 
project specific classes

Potential reuser has higher efforts

- He has to search, find, understand, install, test, parameterize, and 
integrate a component

- Chosen component may inadequate

Effort may pay off, as developers strongly underestimate the development 
effort

 Prof. Dr. Liggesmeyer, 48
QMSS - Reuse

Costs and Benefits of Reuse

Japanese experiences
Not primarily a technical question

Since the end of the 1980ies reuse has a high priority

Results through firm organization and strict compliance of methods

NEC

- 6.7 times better productivity

- 2.8 times better quality of economic applications

- Achieved by

• Identification and standardization of 32 logical templates and 
130 common algorithms

• Strict use of CASE environment



 Prof. Dr. Liggesmeyer, 49
QMSS - Reuse

Costs and Benefits of Reuse

Fujitsu

- After establishing a reusability repository 70% on schedule

- Before only 20%

American experiences
Raytheon

- Analysis and revised design of 5,000 COBOL programs in use

- 50% productivity increase in six years

- Within new systems approximately 60% code reuse

Independent American study

- > 70% shorter delivery times because of reuse

 Prof. Dr. Liggesmeyer, 50
QMSS - Reuse

Costs and Benefits of Reuse

Hewlett-Packard 

- Project 1

• Error reduction: 51%

• Productivity increase: 57%

- Project 2

• Error reduction: 24%

• Productivity increase: 40%

• Decrease of development time: 42%

Quantitative Statements
Each reusable software component has to be seen as company asset

Afterwards, reuse can be calculated as normal financial investment



 Prof. Dr. Liggesmeyer, 51
QMSS - Reuse

Costs 
with reuse

Costs and Benefits of Reuse

Cost/Benefit ratio of reuse

Savings Savings
Investments in reusability

Costs 
with reuse

Expected costs 
without reuse

Expected costs 
without reuse. . .

Activity 1 Activity n

Net benefit
Net deficit

Activities of reusability producer Activities of reusability consumer

 Prof. Dr. Liggesmeyer, 52
QMSS - Reuse

Costs and Benefits of Reuse

A reusability investment is cost-effective, if K < N
K = Overall costs if the investment

N = Savings

Benefit N

ni: Savings for activity i

oi: Expected costs for activity I without reuse

mi: Costs for I with reuse

k: Number of activities affected by the investment

∑ ∑= =
−== k

1i

k

1i iii )m(onN



 Prof. Dr. Liggesmeyer, 53
QMSS - Reuse

Costs and Benefits of Reuse

The Return-On-Investment relation is given by

R < 1 means deficit

R >> 1 means good profit

3 possible strategies for R >> 1 

Increase reuse rate

Reduce average reuse costs

Reduce investment costs needed to gain a reuse benefit

K
N

R =

 Prof. Dr. Liggesmeyer, 54
QMSS - Reuse

Costs and Benefits of Reuse
Metrics to measure reuse

6 categories
Metrics for the cost/benefit analysis

Metrics for the maturity classification

Metrics for the reuse rate

Metrics to calculate reuse impediments

Metrics to estimate the reusability of a component

Metrics for the usage of the reusability repository



 Prof. Dr. Liggesmeyer, 55
QMSS - Reuse

Costs and Benefits of Reuse
Metrics to measure reuse

Metrics for the maturity classification

- No metric in the stricter sense

- More like a characteristic to help an organization to identify the 
current maturity level

Metrics for the reuse rate

- Used, to estimate the reuse rate and to track the development over 
time

components of Number
components reused of Number

 Prof. Dr. Liggesmeyer, 56
QMSS - Reuse

Costs and Benefits of Reuse
Metrics to measure reuse

Metrics to calculate reuse impediments

- Determine impediment factors while trying to reuse components

- Impediment factors are

• Number of tries to reuse a components

• Component does not exist

• Component is not available

• Component was not found

• Component was not understood

• Component is not valid

• Component cannot be integrated



 Prof. Dr. Liggesmeyer, 57
QMSS - Reuse

Costs and Benefits of Reuse
Metrics to measure reuse

- Each impediment factor are assigned impediment causes

• E.g., the factor ‘Number of tries to reuse a components’ are 
assigned the following causes

• Resource restrictions

• No reuse incentive

• Missing training

- Usage of such a metric

• Organization collects data about impediment factors and causes

• She uses this information to improve reusability activities

 Prof. Dr. Liggesmeyer, 58
QMSS - Reuse

Costs and Benefits of Reuse
Metrics to measure reuse

Metrics to estimate the reusability of a component

- Measure component attributes, indicating potential reusability
- Problems arise, as attributes depend on the component type and the 

programming language

- Example
• The following attributes are good indicators for a high black-box 

reusability of Ada components

• Less calls per LOC
• Less input/output parameters per LOC
• Less read/write statements per LOC

• More comments in relation to code
• More auxiliary functions per LOC
• Less lines of code



 Prof. Dr. Liggesmeyer, 59
QMSS - Reuse

Costs and Benefits of Reuse
Metrics to measure reuse

Metrics for the usage of the reusability repository

- Quality of classification scheme
• Costs
• Search effectiveness

• Understandability
- Quality of components

• Number of reuses within 3 months

• Judgment of reused components
- Usage of reusability repository

• System availability

• Number of users
• Executed archive functions
• Number of available components, etc.

 Prof. Dr. Liggesmeyer, 60
QMSS - Reuse

Implementing Reuse
Procedure

Introduction of Reuse
Typical introduction of innovations, with all associated characteristics

Orientation at maturity model of reuse
1. Task: Determination of current state

Afterwards, plan to iteratively reach next level

Define realistic and measurable goals

Time needed to achieve a reuse ratio of 20%
1 year from experience



 Prof. Dr. Liggesmeyer, 61
QMSS - Reuse

Implementing Reuse
Procedure

Requirements for reusable components initially not too demanding
If only tested, ready components are allowed in the repository, developers 
do not dare adding their software

Solution
Divide repository

- Tested components

- Provided components, but to be tested and to be completed

Introduction of reuse leads to investments and changes in the 
organization

 Prof. Dr. Liggesmeyer, 62
QMSS - Reuse

Implementing Reuse
Procedure

Lasting practice of reuse
Has to enter the company’s culture

Has to be trained daily

Change of development tasks
From a writing developer to a reading, evaluating, and creative composing 
software architect

Developers
Show distinct resentments against software, they have not developed 
themselves

Fear poor quality and feel stroked at their creative self-image



 Prof. Dr. Liggesmeyer, 63
QMSS - Reuse

Implementing Reuse
Impediments during the introduction of reuse

Economic 
Missing Commitment

Vague company strategy

Investment level

Losing Deal

Missing rights of use and patent rights

Organizational
Not scheduled in the process

Responsibilities not assigned

Missing promoter 

Missing infrastructure

 Prof. Dr. Liggesmeyer, 64
QMSS - Reuse

Implementing Reuse
Impediments during the introduction of reuse

Sociological
Not-invented-here syndrome

Resistance against changes

Existential fear »Re-Use is a Job-Killer«

Self-image of the developer / changed role

Technical
Missing experience with practical applications

Missing Know-how

Weaknesses in the Software-Engineering process

Missing tools


