0101Seda010100

software engineering dependability

Quality Management of Software and Systems: Supporting Methods and Techniques

Contents

- Methods and Procedures
 - Quality Function Deployment (QFD)
 - Statistical Process Control, SPC
 - Reliability Modeling
 - Quality Circles (Qualitätszirkel)
 - Failure Mode, Effects and Criticality Analysis (FMECA)
- Techniques
 - Cause-and-Effect Diagram (Fishbone Chart, Ishikawa-Diagram)
 - Pareto Analysis
 - Quality Control Charts (in terms of SPC)
 - Correlation Diagram

QMSS - Supporting Methods and Techniques © Prof. Dr. Liggesmeyer

Quality Function Deployment (QFD)

- Complete survey of customer requirements
- Weighting of customer requirements according to their importance for the customer utility and the commercial success
- Tracing of requirements through the development process (transparency which activities are connected with which customer requirements)
- Resources are provided for the realization of important requirements in case of doubt
- Corresponds to the strong customer orientation of TQM, as basically everything can be attributed to customer requirements

0101Seda010100

Statistical Process Control (SPC)

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

- Means for differentiating a statistical variation of a process from a systematic one:
 - Accidental dispersion/distribution: production tolerances of a cutter (Frästeil)
 - Systematic change: slow drift of the measure by tool wear, erratic change by clamping of a wrong cutter head
- Uses statistical tools
- Is executed with the aid of the quality control chart

0101Seda010100

QMSS - Supporting Methods and Techniques © Prof. Dr. Liggesmeyer

Statistical Process Control (SPC) in Production

- Production tolerances due to machine accuracy (e.g. lathe)
- Production tolerances due to process accuracy (quality of material, staff member qualification)
- Predefined tolerable variations allow parts to be evaluated with respect to their exceedance: Parts, which are outside tolerable variation limits are rejected.
- Wish to manage with samples as quality control to be able to abandon expensive checking/testing of every work piece (so-called sorting)
- In production the basis of SPC are the so-called machine capability and process capability. They test the general ability of a machine or a process to generate the required tolerance
- Always mixture of systematic influences (e.g. tool wear, increase of fetch) and stochastic dispersion/distribution (machine quality)
- Application of means of statistics to samples for the separation of noise and real change

QMSS - Supporting Methods and Techniques © Prof. Dr. Liggesmeyer

Statistical Process Control (SPC) Example: Normal Distribution

- Many characteristics are subject to this distribution
- Characteristics

٠

• sample average value $x = \frac{\sum_{i=1}^{n} x_i}{x_i}$

Estimation for the standard deviation
$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - x_i)}{n-1}}$$

• Standard deviation
$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n}}$$

QMSS - Supporting Methods and Techniques © Prof. Dr. Liggesmeyer

0101Seda010100

Statistical Process Control (SPC) Normal Distribution

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

QMSS - Supporting Methods and Techniques © Prof. Dr. Liggesmeyer

software engineering dependability

0101Seda010100

Statistical Process Control (SPC) Normal Distribution

- The inflection points of the curve are at $\mu \sigma$ and at $\mu + \sigma$
- It can be expected (area below the curve) that approximately
 - 68 % of all measurements are between $\mu \sigma$ and at $\mu + \sigma$

 - 95 % of all measurements are between $\mu 2\sigma$ and at $\mu + 2\sigma$ 99 % of all measurements are between $\mu 3\sigma$ and at $\mu + 3\sigma$
- In production besides the mean value/median x of a sampling and the estimation for the standard deviation s also its range R and the median \tilde{x} including the corresponding arithmetic mean/average values $\overline{x, s, R}, \overline{\tilde{x}}$ are used
 - $R = x_{\text{max}} x_{\text{min}}$
 - The median concerning an uneven number of measurements is the middle value of the measurements ordered according to size. Concerning an even number of measurements in a sampling the median is the arithmetic mean value of the two middle values
 - The process average value χ is the average value of the sampling average values χ
- In the scope of SPC the values x, \tilde{x}, R, s are presented in so-called quality control charts

QMSS - Supporting Methods and Techniques © Prof. Dr. Liggesmeyer

8

Statistical Process Control (SPC)

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

QMSS - Supporting Methods and Techniques © Prof. Dr. Liggesmeyer

Statistical Process Control (SPC) Quality Control Charts

- TECHNISCHE UNIVERSITÄT KAISERSLAUTERN
- Two different types of control charts depending on the type of information to be depicted:
 - Charts for variable characteristics (measurements). Average/mean value-chart (*x*-chart) combined with distribution-chart (s-chart)
 - Charts for attributive characteristics (countable characteristics (faults) or properties (good/bad))
- Important difference: charts for variable characteristics can reveal trends before problems are generated, charts for attributive characteristics are based on already existent problems (occurred faults)

10

Statistical Process Control (SPC) Quality Control Charts

 The basis for the definition of the upper and the lower action control limit is the +/-3s-interval which represents an appropriate compromise between false alarm and unrealized alarm situation

measurement-no.

0101Seda010100

QMSS - Supporting Methods and Techniques © Prof. Dr. Liggesmeyer

software engineering dependability

11

Statistical Process Control (SPC) Quality Control Charts for Variable Properties

- The measurements x of properties of a unit, which emanate from a controlled process are normally subject to a normal distribution which is characterized by
 - its average/mean value $\boldsymbol{\mu}$ and
 - its variance σ^2

According to the central limit theorem for a random variable, generated by the overlap of many small factors independent of each other, a normal distribution can be assumed

- Collection of such values in SPC
 - x-charts (also called X-charts) for the average/mean value
 - R-charts or s-charts for the distribution

QMSS - Supporting Methods and Techniques © Prof. Dr. Liggesmeyer

Statistical Process Control (SPC) Quality Control Charts for Variable Properties Example of a Quality Control Chart: The X-Chart

 X-charts serve for the presentation of measurements. They show a displacement of the process average/mean value (e.g. drift) also if the distribution is retained and they identify "outliers/mavericks". X-charts do not serve primarily for the detection of changes of the distribution

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}, s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n - 1}}$$

- Upper Control Limit: UCL: $\overline{x} + 3s$
- Lower Control Limit: LCL: x 3s

QMSS - Supporting Methods and Techniques © Prof. Dr. Liggesmeyer

Statistical Process Control (SPC) Quality Control Charts for Variable Properties Example of a Quality Control Chart: The X-Chart

• Example

• The execution time of a time-critical routine is measured to see if it varies only statistically or if there are systematic influences

	no.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	time (ms)	7,5	7,9	8,2	8,1	7,3	16,9	8,1	7,7	6,6	8,0	7,4	8,3	11,8	7,0

 $\mathcal{X} = (7,5 + 7,9 + 8,2 + 8,1 + 7,3 + 16,9 + 8,1 + 7,7 + 6,6 + 8,0 + 7,4 + 8,3 + 11,8 + 7,0) / 14 = 120,8 / 14 = 8,6$

s = 2,7

14

QMSS - Supporting Methods and Techniques © Prof. Dr. Liggesmeyer

Statistical Process Control (SPC) Quality Control Charts for Variable Properties Example of a Quality Control Chart: The X-Chart

- X-chart: UCL = $\overline{x} + 3s = 16,7$, LCL = $\overline{x} 3s = 0,5$
- Point 6 is above the UCL: cause analysis required

0101Sed a010100 software engineering dependability

QMSS - Supporting Methods and Techniques © Prof. Dr. Liggesmeyer

- Probability that a unit remains functional under predetermined conditions during a particular period of time (in a way: time-referenced quality)
- Reliability is a statistical value which can be estimated when corresponding failure models are taken as a basis
- Typically expressed as
 - Mean failure-free operating time up to failure (MTTF, Mean Time To Failure)
 - Failure rate $\lambda_{(t)}$: relative failure number per time unit as function of the time. If $\lambda_{(t)} = \lambda$ is constant it is valid

 $MTTF = \frac{1}{\lambda}$

16

QMSS - Supporting Methods and Techniques © Prof. Dr. Liggesmeyer

- Group of few staff members which meets regularly with the aim to solve quality problems occurring in their work area resp. to introduce improvements actively
- Typically weekly meetings of about an hour within the working time
- Realization of improvements normally is done by the group itself after a corresponding license is granted; likewise the control of success/result checking
- Quality circles should apply appropriate methods for the problem identification, analysis and solution (Pareto-diagram, Ishikawa-diagram, brainstorming, ...)
- Support and participation of the top management is essential

Quality Circles Typical Procedure of Quality Circles

Problem identification, problem selection

- Selection of problems to be analyzed
- Application of creativity techniques for the problem identification
- Prioritization of problems (e.g. with Pareto-diagram)

Problem handling

- Authorization by decision making department
- Coordination with other quality circles
- Separation of chief causes and secondary causes (e.g. with Ishikawa-diagram)
- Define goals
- Search for solutions (e.g. with brainstorming)
- Evaluate alternatives and choose solutions

Presentation of results

© Prof. Dr. Liggesmeyer

Present solution to the decision making circle and prepare realization

0101Seda010100

Quality Circles Typical Procedure of Quality Circles

Introduction and control of success

- Introduce solution
- Documentation of problem, way of solution and result
- Control of success (preferably quantitatively)
- Generalization (transmission to other parts of the organization, ...)

QMSS - Supporting Methods and Techniques © Prof. Dr. Liggesmeyer

Failure Mode, Effects and Criticality Analysis (FMECA)

- Method that aims at risk prevention by identifying the failure modes of a system their causes and related effects
- Risk evaluation with the aid of the risk priority number
 - RPN = occurrence probability * weight of the effects * probability of non-detection
- Development of proposals for measures
- Decision of measures
- Analysis of residual risk (recalculation of the Risk Priority Number)
- Execution of cost benefit analysis

QMSS - Supporting Methods and Techniques © Prof. Dr. Liggesmeyer

software engineering dependability

20

Cause-and-Effect-Diagram (Fishbone Chart, Ishikawa-Diagram)

- Graphical technique for the analysis of cause-and-effect interrelations. To a problem (effect) the chief causes are identified which are further refined into secondary causes etc.
- Defined by Ishikawa for the application in quality circles (Ishikawa-diagram)

QMSS - Supporting Methods and Techniques © Prof. Dr. Liggesmeyer

Cause-and-Effect-Diagram (Fishbone Chart, Ishikawa-Diagram) Example

22

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

0101Seda010100

QMSS - Supporting Methods and Techniques © Prof. Dr. Liggesmeyer

- Define problem (effect) and attach it to the head of the "fishbone"
- Attach the major causes to the "sidewise fishbones" (often used: the 6 m: man, machine, method, material, milieu, measuring)
- Attach minor causes to the branches of the "sidewise fishbones" (brainstorming: identification with the aid of the questions: what, why, how, who, when, where)
- Identification of real cause
- Development of solution alternatives and choice of the optimal solution
- Introduction of solution

- The Pareto Principle 20 % of the error/defect causes generate 80 % of the defects
- Histogram (bar chart/diagram) which presents subsets ordered according to decreasing size from left to right
- Additionally a sum curve of the bar heights can be applied
- Aims at high efficiency concerning improvements by prioritization
- Example: Every bar symbolizes a certain type of error. The height of the bar symbolizes the total costs required for the elimination of faults. The Pareto Principle here is "20 % of the faults cause 80 % of the costs". The avoidance of these 20 % of faults will have first priority. These faults are the aim of quality improvements

0101Seda010100

QMSS - Supporting Methods and Techniques © Prof. Dr. Liggesmeyer

Correlation Diagram

- Instrument for the analysis of the dependence between two characteristics based on a set of pairs of characteristics
- Statistical basis: correlation coefficient
- Examples
 - Number of software modules and development costs
 - Number of test cases and number of notified failures during the first year of product use

QMSS - Supporting Methods and Techniques © Prof. Dr. Liggesmeyer

Correlation Diagram

QMSS - Supporting Methods and Techniques © Prof. Dr. Liggesmeyer

software engineering dependability

0101Seda010100

27

Literature

- Feigenbaum A.V., Total Quality Control, 3rd Edition, New York: McGraw-Hill 1983
- Frehr H.-U., Total Quality Management: Unternehmensweite Qualitätsverbesserung, München: Hanser 1993
- Braverman J.D., Fundamentals of Statistical Quality Control, Reston: Reston Publishing Co., Prentice Hall 1981
- Wheeler D.J., Chambers D.S., Understanding Statistical Process Control, Knoxville: SPC Press 1992
- Zultner R., Before the house: The voices of the customers in QFD, in: Transactions 3rd Symposium on QFD, Novi, MI, June 1991, pp. 450-464

