

Quality Management of Software and Systems:

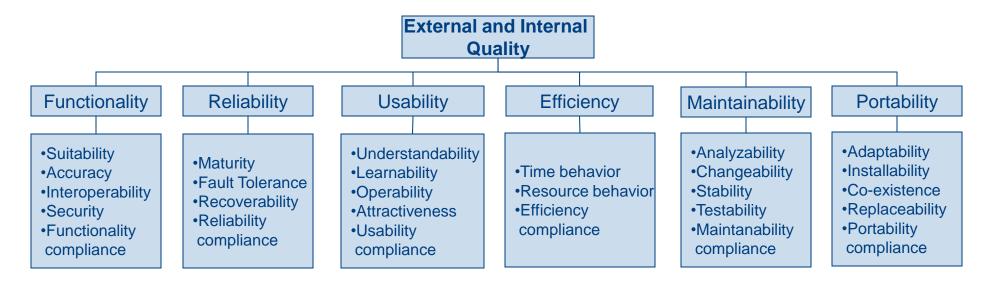
Model Based Improvement Approaches

Contents

- ISO/IEC 9126
- ISO/IEC 12207: 2008 (Basis for process standards)
- EN ISO 9000: series
- CMMI (Successor of CMM)
- ISO/IEC 15504 (SPICE)
- ITIL
- CoBIT
- Personal Software Process (PSP)

ISO/IEC 9126

- Standard for software quality focusing in software products [1].
- It defines software product quality characteristics that can be applied to:
 - Specify functional and non-functional customer and user requirements.
 - Validate the completeness of a requirements definition.
 - · Identify software design and testing objectives.
 - · Identify quality assurance criteria.


[1] ISO/IEC 9126, Software engineering - Product Quality. Parts 1 to 4, 2001-2004

- These characteristics are defined within a two part quality model.
- **Software Quality**: describes the degree in which all defined software requirements are fulfilled. There are three different points of view to determine this: user, developer and manager.
- Quality Model: describes causal relationships between not tangible views on quality and tangible software measures:
 - Hierarchical ordered quality aspects that in the end lead to software measures.

ISO/IEC 9126 – Quality Model part 1

Two part quality model: Characteristics for Internal and External Quality:

- Internal Quality: describes characteristics of software from an internal point of view. It specifies characteristics of interim (intermediate) products.
- External Quality: describes characteristics of software from an external point of view. It is derived from the user's quality requirements.

ISO/IEC 9126 – Quality Model part 2

Two part quality model: Characteristics for Quality in use:

• Quality in use: depicts the user's point of view with respect to software quality in a specific environment and a context of use.

ISO/IEC 12207:2008

- Provides a common framework for software life cycle processes with the purpose of:
 - · Providing a standardization of terms to

[1] ISO/IEC 12207, Systems and software engineering – Software life cycle processes. 2008

- Achieve a common understanding of concepts, thus
- Facilitating communication among stakeholders in the life cycle of a software product.
- It consists out of processes, activities and tasks:
 - 44 processes distributed among 7 process groups.
 - Each process has a defined purpose and outcomes.
 - Activities and tasks that are required to achieve the expected process *outcomes* are performed.
- It covers the complete software life cycle, starting from its conception until its removal from service.
- It can be performed in combination with the ISO/IEC 15288 standard (System life cycle processes).

ISO/IEC 12207:2008 - Processes 1

- System context processes are organized into 4 groups:
 - Agreement
 - Organizational Project-Enabling
 - Project
 - Technical

System Context Processes			
	reement ocesses	Project Processes	Technical Processes
A	Acquisition Supply	Project Planning	Stakeholder Requirements Definition
Organizational Project- Enabling Processes		Project Assessment And Control	System Requirements Analysis
		Decision Management	System Architectural Design
		Risk	Implementation
	Life Cycle Model Management	Management	System Integration
	rastructure anagement	Configuration Management	System Qualification Testing
			Software Installation
	ect Portfolio anagement	Information Management	Software Acceptance Support
	an Resource	Measurement	Software Operation
Ma	anagement		Software Maintenance
Ma	Quality anagement		Software Disposal

ISO/IEC 12207:2008 - Processes 2

- Software specific processes are organized into 3 groups:
 - Implementation
 - Support
 - Reuse

Software Specific Processes SW Implementation SW Support Processes Processes Software Software Documentation implementation Management Software Requirements **Software Configuration Analysis** Management Software Architectural **Software Quality** Design Assurance Software Detailed Software Verification Design Software Validation **Software Construction** Software Review Software Audit **Software Integration** Software Software **Problem Resolution Qualification Testing Software Reuse Processes** Domain Reuse Program Reuse Asset Engineering Management Management

EN ISO 9000 - Series

- Series of standards that define fundamentals for quality management systems.
- They represent an international consensus on good quality management practices.
- These standards can be applied within all industrial sectors. In particular, the ISO/IEC 90003:2004 standard is suitable for software.
- Set of standards corresponding to the ISO 9000 series:
 - EN ISO 9000:2005 Fundamentals and concepts of quality management systems
 - EN ISO 9001:2008 Requirements for a quality management system
 - EN ISO 9004:2000 Quality management systems: Guidelines for performance improvement
 - EN ISO 19011:2002 Guidelines for audits of quality management and/or environmental management systems
 - ISO/IEC 90003:2004 Instructions for the application of the ISO 9001:2000 in computer software.

Capability Maturity Model - CMM

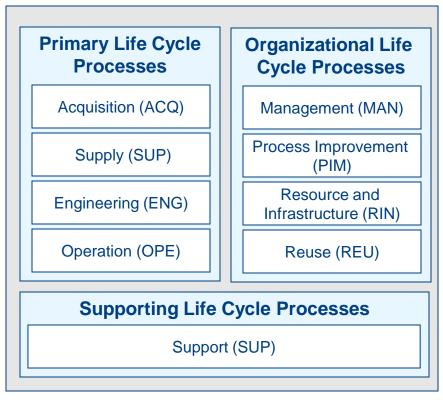
- A framework for software process improvement [1]. It provides guidelines on how to select strategies toward process improvement, by:
 - Establishing the current level of process maturity in an organization.
 - Identifying drawbacks, which have to be improved in order to achieve a better maturity level.
- The CMM defines 5 maturity levels:
 - Initial
 - Repeatable
 - Defined
 - Managed
 - Optimizing
- Each level includes a set of recommended practices in several key areas.
- → It is believed that by performing these practices, an organization will improve its software process capability.

ISO/IEC 15504 (SPICE)

- International standard dedicated to the assessment and improvement of software processes in an organization.
- It consists out of 5 parts:
 - ISO/IEC 15504-1:2004 Concepts and vocabulary
 - ISO/IEC 15504-2:2003 Requirements to conduct process assessments
 - ISO/IEC 15504-3:2004 Support for performing process assessments
 - ISO/IEC 15504-4:2004 Assistance on use of this standard for process improvement and process capability determination
 - ISO/IEC 15504-5:2006 An exemplar process assessment model
- Analogously to ISO/IEC 12207:1995, this standard defines three process categories within nine different groups.

ISO/IEC 15504 (SPICE) - Processes

Primary Life Cycle Processes:


- ACQ: processes related to software consumers
- SUP: processes related to software vendors
- ENG: engineering processes used in software development
- OPE: processes used for the operation of developed (built) software

Organizational Life Cycle Processes

- MAN: processes used in project management and related activities.
- PIM: processes used to improve other processes
- RIN: processes that supply the infrastructure required by other processes
- REU: processes applied for the systematic reuse of software components

Supporting life cycle processes

• SUP: define cross-section processes for the primary life cycle processes e.g. quality assurance processes, and Validation & Verification.

ISO/IEC 15504 (SPICE) - Assessments

- Assessments are performed by evaluation a chosen subset out of the 49 processes.
- SPICE identifies six capability levels:
 - Level 0: Incomplete
 - Level 1: Performed
 - · Level 2: Managed
 - Level 3: Established
 - Level 4: Predictable
 - · Level 5: Optimizing
- An assessment is conducted considering predefined *Process Attributes (PA)*, which a process has to fulfill in each of the aforementioned levels.
- For each process, SPICE defines a Purpose, its expected Outcomes and Base Practices.
- Capability grade of a process:
 - Determined by verifying that a process outcomes fulfill the process attributes of a specific capability level.

IT Infrastructure Library (ITIL)

- Quasi-standard dedicated to manage the information technology (IT) services.
- Developed in 1989 by the *Office of Government Commerce (OGC)* in Great Britain.
- In particular, ITIL V3 describes a comprehensible IT-service management, which covers the planning, production and support for IT services:
 - Service Strategy
 - Service Design
 - Service Transition
 - Service Operation
 - Service Continual Service Improvement
- Unlike CMM or spice, the focus of ITIL is on production of services and not on systems development!

CoBIT

- Control **Objectives** for **Information** and Related **Technology** (CoBIT), describes a widespread-controlling approach in the area of *IT-Governance*.
- IT Governance ensures that the IT-structures and processes of an organization are aligned with its strategies and goals (Business Alignment).
- This approach was first developed by the *Information Systems Audit and Control Association* (ISACA) and then transferred in 2000 to the *IT Governance Institute*.
- Another regulation proposed in the area of IT Governance:
 - Sarbanes-Oxley Act (SOC)

[1] ISACA, Control Objectives for Information and related technology (CoBIT®), www.isaca.org

Personal Software Process (PSP)

- Motivation: the achievement of higher quality in an organization depends:
 - On the performance of the development group.
 - In turn, the performance of the group depends on the performance delivered by each one of its members.
 - Finally, the performance of each of the development group's members depends on the practices they apply.
- The PSP is an improvement approach focused on the performance improvement of single software developers.
- PSP, organized as a self-improvement process (training program), includes a series of exercises that each developer should do (comparable to the CMM levels):
 - PSP0 Baseline Process
 - PSP1 Personal Planning Process
 - PSP2 Personal Quality Management
 - PSP3 Cyclic Personal Process

Literature

- DIN EN ISO 9000, Qualitätsmanagement Grundlagen und Begriffe. Berlin: Beuth Verlag 2005.
- DIN EN ISO 9001, *Qualitätsmanagementsysteme Anforderungen*. Berlin: Beuth Verlag 2008.
- DIN EN ISO 9004, Quality management systems Guidelines for performance improvements. 2000
- DIN EN ISO 19011 02, Guidelines for quality and/or environmental management systems auditing. 2002
- ISACA, Control Objectives for Information and related technology (CoBIT®).
 www.isaca.org
- ISO/IEC 9126, Software engineering Product Quality. Parts 1 to 4, 2001- 2004
- ISO/IEC 12207, Systems and software engineering Software life cycle processes. 2008.
- ISO/IEC 15504, Information technology Process assessment. 2008