
Quality Management of Software and Systems:

Software Measurement

QMSS - Software Measurement

© Prof. Dr. Liggesmeyer

Contents

• Motivation

• Software Quality Experiments

• Software Measures

• Measuring Scales

• Cyclomatic Complexity

• Current Impact of Software Measurements

• Software Quality Measurement

Quality Management of Software and Systems:

Reuse

2

QMSS - Software Measurement

© Prof. Dr. Liggesmeyer

Motivation

Measurement

• „When you can measure what you are speaking about, and express it in numbers,

you know something about it; but when you cannot measure it, when you cannot

express it in numbers, your knowledge is of a meager and unsatisfactory kind.“

(Lord Kelvin, Popular Lectures and Addresses, 1889)

• „Was man messen kann, das existiert auch!“

(Max Planck, 1858 - 1947)

3

QMSS - Software Measurement

© Prof. Dr. Liggesmeyer

Motivation

Measurements in Software Development

• Substitutes qualitative and usually intuitive statements about software for

quantitative and reproducible statements

• Example
• Qualitative, intuitive

• The developer states: ‘I have fully tested my software module.’

• Quantitative, reproducible

• ‘My test tools states a branch coverage of 57% (70 of 123 branches) at the moment. In our

company modules are considered sufficiently tested with a branch coverage of 95%. Thus, I

have to test at least 47 additional branches with an estimated additional effort of 1.5 days based

on experiences with similar modules.’

4

QMSS - Software Measurement

© Prof. Dr. Liggesmeyer

Motivation: Measuring Quality in Software

Development

• Today, software is used in application domains, where quantitative statements are

common or necessary
• Contracts: ‘We stipulate a minimum availability of 99.8%!’

• Safety proof of a rail system for the Federal Railway Authority (EBA): ‘What is the residual risk of

software failures?’

• Is the estimated number of residual faults sufficiently small to release the products?

• Is the possibility of software faults in controllers causing a failure in our upper class limousine

sufficiently small?

• We need a failure free mission time of four weeks. Is this possible?

5

QMSS - Software Measurement

© Prof. Dr. Liggesmeyer

Motivation: Measuring Quality in Software

Development - Problems

• Most quality characteristics not directly measurable!
• Number of faults

• Availability

• Reliability

• Safety

• ...

• Quality characteristics may be
• Determined experimental (e.g., reliability)

• Calculated from directly measurable characteristics (e.g., number of faults based on the measure of

complexity)

6

QMSS - Software Measurement

© Prof. Dr. Liggesmeyer

Software Quality Experiments: Stochastic

Analysis of Software Reliability - Situation

• Independent research area since approximately 30 years

• Sparse influence to software development in practice

• Mathematical foundation partly very complex

• A lot of different stochastic reliability models

• A priori selection of a model not possible

• Determination of model parameters necessary

• Theory application to practice needs powerful tool support

7

QMSS - Software Measurement

© Prof. Dr. Liggesmeyer

Software Quality Experiments: Stochastic

Analysis of Software Reliability - Theory

• Musa and Goel-Okumoto model, respectively

• Generalized Goel-Okumoto model

• Musa-Okumoto model

• Generalized Musa-Okumoto model

• Duane and Crow model, respectively

• Log model

• Log power model

• Generalized log power model

• Yamada S-shape model

• Generalized Yamada S-shape model

• Geometric Moranda and deterministic proportional model, resp.

• Littlewood model

• Inverse linear model

)1()(
bt

eatm

)1()(
c

bt
eatm

)1ln()(btatm

)1ln()(
c

btatm
b

attm)(

)ln()(btatm

)1(ln)(tatm
b

)1(ln)(ctatm
b

))1(1()(
bt

ebtatm

))1(1()(
bt

ectatm

)1ln()(tbatm
b

atctm

)()(

)11()(btatm

))(()(tNEtm

8

QMSS - Software Measurement

© Prof. Dr. Liggesmeyer

Software Quality Experiments: Stochastic Analysis

of Software Reliability - Practical Method of Resolution

9

QMSS - Software Measurement

© Prof. Dr. Liggesmeyer

Software Quality Experiments: Stochastic Analysis

of Software Reliability - Practical Method of Resolution

• Numerous application domains (traffic engineering, medical engineering,

telecommunication, ...)

10

QMSS - Software Measurement

© Prof. Dr. Liggesmeyer

Software Measures

Applying Measures

Process measures Product measures

Project measures

LOC

Cyclomatic

Number

Function

Points
Average

Productivity

Test

Coverage

On schedule

at phase

transitions

Average fault

detection of

inspections

Current accumulated costs

Estimated costs

11

QMSS - Software Measurement

© Prof. Dr. Liggesmeyer

Software Measures

Requirements of Measures

• Simplicity
• Is the result so simple that it could be easily interpreted?

• Adequacy
• Does the measure cover the desired characteristic?

• Robustness
• Is the value of the measure stable against manipulations of minor importance?

• Timeliness
• Can the measure be generated at a sufficient point in time to allow a reaction to the process?

• Analyzability
• Is the measure statistically analyzable (e.g., numeric domain) (For this requirement the type of the

measure scale is crucial)

12

QMSS - Software Measurement

© Prof. Dr. Liggesmeyer

Software Measures : Requirements of

Measures - Reproducibility

• Normally, a measure is

reproducible, independent of the

generation mechanism, if it is

defined in a precise way

Measured

value

Product / Process

!

Manual

generation

of measures

Tool-supported

generation of

measures

Measured

value

13

QMSS - Software Measurement

© Prof. Dr. Liggesmeyer

Software Measures: Requirements of

Measures - Reproducibility

• Examples
• McCabe's cyclomatic number: e-n+2

e = Number of edges in a CFG; n = Number of nodes in a CFG; CFG = Control flow graph

• Completely reproducible

• Lines of Code (LOC)

Count empty lines? Count lines with comment?

• Completely reproducible, if adequately defined

• Function Points: manual evaluation of complexities needed

• Not completely reproducible in principle

• Understandability

• Poor reproducibility

14

QMSS - Software Measurement

© Prof. Dr. Liggesmeyer

Software Measures

Evaluation of Measures

• A recommendation of lower and upper bounds for measures is difficult

• Which values are ‘normal’ must be determined by experience

• A deviation from usual values may indicate a problem, not necessarily, though

15

QMSS - Software Measurement

© Prof. Dr. Liggesmeyer

Software Measures

Calibration of Measures and Models

• The correlation between measures and relevant characteristics demands a

calibration, which has to be adapted to changing situations if necessary

• Empirical and theoretical models can be distinguished

• Example
• Theoretical effort model (cp. Halstead-Measures)

E = ... size2 ...

The square correlation between effort and size was identified by theoretical considerations

• Empirical effort model: E = ... size1.347 ...

The exponent of 1.347 was determined by statistical data analysis

16

QMSS - Software Measurement

© Prof. Dr. Liggesmeyer

Measurement Scales

• While expressing abstract characteristics as numerical value, it is necessary to

figure out which operations can be reasonably performed on the values

• Example:

• Measuring length
• Board a has a length of one meter. Board b has a length of two meters. Thus, board b is two

times as long as board a

• This statement makes sense

• Measuring temperature
• Today, we have 20°C. Yesterday it was 10°C. Hence, today it is twice as hot as yesterday

• That is wrong. The correct answer would be: Today is approximately 3.5 % warmer than

yesterday

• Obviously, there is a difference between the temperature scale in °C and the

length in meters, which leads to operations not applicable to the temperature

scale

17

QMSS - Software Measurement

© Prof. Dr. Liggesmeyer

Measurement Scales

• Nominal scale
• Free labeling of specific characteristics

• Inventory numbers of library books (DV 302, PH 002, CH 056, ...)

• Names of different requirements engineering methods (SA, SADT, OOA, IM, ...)

• Ordinal scale
• Mapping of an ordered attribute’s aspect to an ordered set of measurement values, such that the

order is preserved

• Mapping of patient arrivals to the waiting list in a medical practice

• Interval scale
• A scale, which is still valid if transformations like g(x) = ax + b, with a > 0 are applied

• Temperature scales in degree Celsius or Fahrenheit. If F is a temperature in the Fahrenheit scale,

the temperature in the Celsius scale can determined as follows: C = 5/9 (F - 32). The relations

between temperatures are preserved

18

QMSS - Software Measurement

© Prof. Dr. Liggesmeyer

Measurement Scales

• Rational scale
• Scale, where numerical values can be related to each other (percental statements make sense)

• Length in meters (It is twice as far from a to b than from c to d)

• Temperature in Kelvin

• Absolute scale
• Scale, providing the only possibility to measure circumstances

• Counting

19

QMSS - Software Measurement

© Prof. Dr. Liggesmeyer

Cyclomatic Complexity

• Common measure of complexity

• Often surrounded with an aura of an ‘important’ key measure

• Originated from graph theory (strongly connected graphs) and thus relating to

control flow graphs and programs

• Calculation: e – n + 2

(e = Number of edges, n = Number of nodes)

• Easy to calculate as it depends strongly on the number of decisions within the

program

• Suited as complexity measure, if the number of decisions predicate the

complexity of the program

• Probably the most common measure in analysis and testing tools

20

QMSS - Software Measurement

© Prof. Dr. Liggesmeyer

Cyclomatic Complexity

• Cyclomatic number is a measure of the structural complexity of programs

• Calculation based on the control flow graph

• Cyclomatic number v(G) of a graph is: v(G) = e - n + 2

(e – Number of edges, n – Number of nodes)

21

QMSS - Software Measurement

© Prof. Dr. Liggesmeyer

Cyclomatic Complexity

• Cyclomatic complexity of graphs

Sequence v(G) = 1-2+2 = 1

v(G) = 4-4+2 = 2

Pre-test loop v(G) = 3-3+2 = 2

Post-test loop v(G) = 3-3+2 = 2

Selection

22

QMSS - Software Measurement

© Prof. Dr. Liggesmeyer

Current Impact of Software Measurements

• Efficient software measurements are important for the following areas
• Flat management structures

• Standardizations with respect to software developments

• Achieving a high Capability Maturity Level (Assessments)

23

QMSS - Software Measurement

© Prof. Dr. Liggesmeyer

Current Impact of Software Measurements: Software

Measurements and Flatter Management Structures

• Trend for software management towards flat structures
• One manager supervises significantly more developers than before

• Provision and summarization of information not through middle management, but automated

measurement systems

• Management intervention only necessary if measurement values indicates problematic situations

 Efficient measurement is an important requirement

24

QMSS - Software Measurement

© Prof. Dr. Liggesmeyer

Current Impact of Software Measurements: Software

Measurements and Software Development Standards

• Standards become more and more important for the software development (e.g.,

ISO 9001)
• Quality proof for potential customers

• Marketing argument; differentiation from not certified competitors

• Important with respect to product liability

• In some domains requirement for the contract

• All standards attach importance to systematic procedures, transparency, and control of the

development process

This can be proven by adequate measures

25

QMSS - Software Measurement

© Prof. Dr. Liggesmeyer

Current Impact of Software Measurements: Software

Measurements and the Capability Maturity Model

• Capability Maturity Model assigns the maturity of a software development process

to one of five levels. The possible levels are: 1-initial, 2-repeatable, 3-defined, 4-

managed, 5-optimized

• Reaching level 4 or 5 is only possible if a measurement system exists and is used

that provides the following tasks
• Measurement of productivity and quality

• Evaluation of project based on this measurements

• Detection of deviations

• Arrange corrective activities if deviations occur

• Identification and control of project risks

• Prognosis of project progress and productivity

26

QMSS - Software Measurement

© Prof. Dr. Liggesmeyer

Software Quality Measurement

Chain of Reasoning

Mea-
sure-
ment
goal

Hypothesis

Measure-
ment Mea-

sured
values

Validation
of mea-
sures

7 (±2)

(8,4, ...)

Mea-
sures

(complex software
contains more
faults)

(Prediction
of residual

faults)

Actual goal

(safety risk from
residual faults?)

Number
of faults?

Statement

(After performing
adequate actions
the residual risk is

acceptable)

actions Evaluation of measured values

(How many faults are contained?)

(McCabe,
DIT,
...)

wrong?

difficult!difficult! 27

QMSS - Software Measurement

© Prof. Dr. Liggesmeyer

Software Quality Measurement: Popular

Hypotheses in Theory and Practice

/Fenton,

Ohlsson 00/

/Basili, et al.

96/

/Cartwright,

Shepperd 00/

/Basili,

Perricone 84/

/Abreu, Melo

96/

Few modules contain the majority

of faults

++ ++ (+) ++ /

Few modules generate the

majority of failures

++ / / / /

Many faults during the module test

means many faults during the

system test

+ / / / /

Many faults during the test means

many failures during usage

-- / / / /

Fault density of corresponding

phases are constant between

releases

+ / / / /

Size measures are adequate for

the fault prediciton

+ / + - /

++: strong conformation; +: light conformation; 0: no statement;

-: light refusal; -- strong refusal; /: not evaluated; ?: unclear
28

QMSS - Software Measurement

© Prof. Dr. Liggesmeyer

Software Quality Measurement: Popular

Hypotheses in Theory and Practice - Findings I

• Faults are not uniformly distributed among software modules, but concentrated in

few modules

• These modules generate the majority of all problems

• Larger module size does not necessarily mean more faults

• Many discovered problems during the tests does not mean that the software

shows a lack of quality during practice

• There seem to be rules guaranteeing that subsequent developments provide

similar results

• Question:
• How can the few modules that contain the majority of faults be discovered?

29

QMSS - Software Measurement

© Prof. Dr. Liggesmeyer

Software Quality Measurement

Popular Hypotheses in Theory and Practice

/Fenton,

Ohlsson 00/

/Basili, et al.

96/

/Cartwright,

Shepperd 00/

/Basili,

Perricone 84/

/Abreu, Melo

96/

Code complexity measures are

better means for fault prediction

Better than

size

measures:

-

WMC: + WMC: / Better than

size

measures:

-

MHF: +

DIT: ++ DIT: ++ AHF: 0

RFC: ++ RFC: / MIF: +

NOC: ? NOC: ? AIF: (+)

CBO: ++ CBO: / POF: +

LCOM: 0 LCOM: / COF: ++

• Object-oriented measures

• WMC (Weighted Methods per Class)

• DIT (Depth of Inheritance Tree)

• RFC (Response For a Class)

• NOC (Number Of Children)

• CBO (Coupling Between Object-classes)

• LCOM (Lack of Cohesion on Methods)

• MHF: Method Hiding Factor

• AHF: Attribute Hiding Factor

• MIF: Method Inheritance Factor

• AIF: Attribute Inheritance Factor

• POF: Polymorphism Factor

• COF: Coupling Factor

30

QMSS - Software Measurement

© Prof. Dr. Liggesmeyer

Software Quality Measurement: Popular

Hypotheses in Theory and Practice - Findings II

• Several simple complexity measures (e.g., McCabes cyclomatic number) are not

better than size measures (e.g., LOC)

• Specific complexity measures display a good quality of fault prediction

• Conclusion
• A suitable combination of adequate complexity measures enables a directed identification of

faulty modules

31

QMSS - Software Measurement

© Prof. Dr. Liggesmeyer

Software Quality Measurement

Popular Hypotheses in Theory and Practice

/Fenton,

Ohlsson 00/

/Basili, et al.

96/

/Cartwright,

Shepperd 00/

/Basili,

Perricone 84/

/Abreu, Melo

96/

Model-based (Shlaer-

Mellor) measures are

suited for fault prediction

/ / Events:

++

/ /

Model-based measures

are not suited for size

prediction

/ / States:

++

/ /

32

QMSS - Software Measurement

© Prof. Dr. Liggesmeyer

Software Quality Measurement: Popular

Hypotheses in Theory and Practice - Findings III

• It is possible to derive measures from software design to predict code size and

fault numbers at an early stage

33

QMSS - Software Measurement

© Prof. Dr. Liggesmeyer

Software Quality Measurement

Conclusions

• Statistic methods for deriving software reliability are theoretically funded and

applicable in practice

• Several plausible hypotheses are empirically falsified, but there is evidence that
• Faults concentrate in few modules

• These modules can be identified through measurements of

• Code complexity

• Complexity of design models

• Prediction of faults based on single measures (so-called univariate analysis) is not

possible. A suitable combination of measures (so-called multivariate analysis) can

produce reliable propositions

• It can be anticipated, that prediction models can be generated based on finished

projects, as the similarity between subsequent projects is empirically supported

34

QMSS - Software Measurement

© Prof. Dr. Liggesmeyer

Literature

• Halstead M.H., Elements of Software Science, New York: North-Holland 1977

• Zuse H., Software Complexity - Measures and Methods, Berlin, New York: De

Gruyter 1991

35

