
Prof. Dr.-Ing. Peter Liggesmeyer TU Kaiserslautern
Dipl.-Inf. Max Steiner Dept. of Computer Science
 AG Software Engineering: Dependability

Software Quality Assurance (WS14/15)

Problem Set 4

Due: in exercise, 14.01.2015

Problem 1: Testing Object-oriented Software

Given is a simplified specification of ATM operation sequences:
1. Customer enters card into the card reader
2. Customer console requesting pin entry is displayed
3. An interleaved sequence of digits is proved by the ATM
4. If user enters wrong pin three times, the card will be retained
5. Withdrawal transaction is created and performed
6. Cash dispenser dispenses approved amount to customers
7. Session ends if no transaction is active
8. Card is returned to customer
9. Possibility of cancellation by customer

The following additional requirements are to be considered:
1. PINs are four-digit number sequences, meaning ≥ 0001 and ≤ 9999
2. Withdrawal is only possible by choosing the menu options that are displayed by the customer

console.
3. For this cash machine, it is only possible to input digits.

a) Please draw the state transition diagram for one session context according to this description.

A session sequence diagram is shown below, which will additionally help you to derive the
state chart.

:CardReader :ATM

:Session

:CustomerConsole

:Transaction

cardInserted()

<<create>>(this)

performSession()

readCard()

card

readPIN()

PIN

[while customer wants to perform transactions]

<<create>>(atm,this,card,pin)

performTranaction()

doAgain

ejectCard()

Session Sequence Diagram

X

X

b) Class test (unit test)
After an initial analysis, the following components (individual classes) are identified:

1. Operator panel
2. Card reader
3. Customer console, consisting of a display and keyboard
4. Network connection to the bank
5. Cash dispenser
6. Receipt printer
7. Session
8. Transaction

 Attached you will find an excerpt of a standard for Test Documentation. Please read it and
 derive a unit test plan for this ATM system that includes the classes mentioned

c) Integration Test
Test of the intersection of the classes customerConsole and Withdrawal (sub-class of
Transaction) via the message ReadMenuChoice() (see attached diagram Withdrawal
Transaction Collaboration).

:Withdrawal

:CustomerConsole

:CashDispenser

:Receipt

ReadMenuChoice()

DispenseCash()

<<Create>>

Withdrawal Transaction

Collaboration

Interface specification of the operation ReadMenuChoice()

 The operation ReadMenuChoice() expects a non-negative value (10  value  500). It specifies
the value of the bill in euros.

 The operation has the return value of the amount selected by the customer.
Interface parameter of the calling routine at the CustomerConsole device

 The following values can be chosen by the customer: ReadMenuChoice(): 20, 50, 100, 150, 200.

1. Please determine the assertion of this interface parameter for the integration test and derive
the equivalence classes and test cases for input and output interfaces.

2. Please determine the equivalence classes and test cases for the operation readPIN() as well
(with Boundary Value Analysis, readPIN() returns 4-digit number put in by the customer).

3. Attached you will find a template (Integration Test Plan), which is generated from a real
project. Please read through it and derive an integration test plan for this ATM system, with
an emphasis on the interfaces ReadMenuChoice() and readPIN().

d) System Test

1. For a functional system test, what functions need to be tested? How do you ensure the
completeness of your test set?

2. How do you test system performance (reaction time and the like)?
Now the customer of this ATM system demands to have an additional menu option for the user, the
“300” option. This option is obviously not included in the available menu options, and should be added
to both the CustomerConsole and the Withdrawal classes. The interface specification is altered, and
ReadMenuChoice() is overwritten accordingly as well.

3. Do you need new test cases for this new menu option? Why? If so, which test cases do you
need? Should the assertion be changed?

Problem 2: Function-oriented Test

• The system to be tested consists of two components: Thrower and ThingsToBeThrown.
Thrower calls the method throw() from ThingsToBeThrown.

• The original documentation of the component ThingsToBeThrown is as follows (it is a few years
old already):

• "First shalt thou take out the Holy Pin, then shalt thou count to three, no more, no less. Three shall
be the number thou shalt count, and the number of the counting shall be three. Four shalt thou
not count, neither count thou two, excepting that thou then proceed to three. Five is right out.
Once the number three, being the third number, be reached, then lobbest thou thy Holy Hand
Grenade of Antioch towards thy foe, who being naughty in My sight, shall snuff it."1

a) First you have to test the interface between the classes Thrower and ThingsToBeThrown via
the message throw().

Interface specification of the operation throw():
- the operation throw() expects a delay in seconds and a flag safetyRemoved, the delay is

an integer value between 0 and 10, the flag is a Boolean value

- it has no output

Interface parameter of the calling routine
- The following values can be chosen by the thrower: the flag safetyRemoved can be true or

false, as delay 2, 3, 4, 5 can be chosen

Determine the assertion of the parameter delay for the integration test and derive the equivalence
classes for the interface.

b) Determine test cases for the operation throw based on a boundary value analysis of the input

parameters.

c) For a functional system test, what functions need to be tested? How do you ensure the
completeness of your test set?

d) The system requirements have been changed. Now the thrower component can choose a delay of
2, 3, 4, 5, 8. Which new test cases do you need? Which ones can be reused? How does the assertion
change?

1 You should know where this citation stems from, otherwise you can look it up on Wikipedia.

