
Software Quality Assurance

Unit Test, Integration Test, System Test

- An Object-Oriented Example -

Software Quality Assurance – Test of Object-Oriented Software

© Prof. Dr. Liggesmeyer

Contents

• Object-oriented module test: class test

• Object-oriented integration test

• Object-oriented system test

2

Software Quality Assurance – Test of Object-Oriented Software

© Prof. Dr. Liggesmeyer

Object-Oriented Example

• In the following as an example the control of an object-oriented refreshments

vending machine is used

• The machine contains
• The machine control

• The customer operating unit

• The service operating unit

• The coin checking device

• The drinks/cup dispenser

• The change dispenser

3

Software Quality Assurance – Test of Object-Oriented Software

© Prof. Dr. Liggesmeyer

Test of Object-Oriented Software

Object-Oriented Example

: coin checking device

: customer operating unit

: machine control

: change dispenser

: drink/cup dispenser

: service operating unit

dispense_drink()

dispense_cup()

select_cup()

give_change()

select_drink()

display_amount()

drinks_sold_out()

no_cups()

no_change()

determine_price() insert_coin() dispense_change()

4

Software Quality Assurance – Test of Object-Oriented Software

© Prof. Dr. Liggesmeyer

Object-Oriented Unit Test

Test of Individual Operations

• The test of operations is comparable to classic testing of functions and

procedures

• But operations
• Often have a very simple control structure

• Are highly dependent on the attributes of the object

• Have interdependencies

• Usually, operations may not be tested separately

5

Software Quality Assurance – Test of Object-Oriented Software

© Prof. Dr. Liggesmeyer

Object-Oriented Unit Test

Test of Individual Operations

• Only in exceptional cases operations can be tested alone; here specification of
the operation „dispense_change"

• The class "change dispenser" contains the information about the coins available
for paying change according to sort and number. Altogether max. possible are 50
coins at 2 Euros, 100 coins at 1 Euro, 100 coins at 50 Cent, 100 coins at 20 Cent
and 200 coins at 10 Cent. Change is paid according to the following rules
• Payment is done with the lowest number of coins, i.e. the change is paid at first if necessary with 2

Euro coins, then with 1 Euro coins, following 50 Cent coins, 20 Cent coins and 10 Cent coins. If a
required sort of coins is not available anymore, the payment is done with the following smaller sort

• If less than twenty 10 Cent coins are available, the message no_change (yes) is sent to activate the
No-Change-display. This also happens if a total sum of the change except for the 2 Euro coins falls
below 5 Euros. Otherwise the message no_change (no) is sent

6

Software Quality Assurance – Test of Object-Oriented Software

© Prof. Dr. Liggesmeyer

Object-Oriented Unit Test

Test of Individual Operations

• Equivalence Classes

Condition valid invalid

change change ≥ 2 € 2 € > change ≥ 1 € < 0

1 € > change ≥ 0,50 € 0,50 € > change ≥ 0,20 €

0,20 € > change ≥ 0,10 € 0,10 € > change ≥ 0 €

coins

2 € 50 ≥ coins > 0 coins =0 < 0 > 50

1 € 100 ≥ coins > 0 coins =0 < 0 > 100

0,50 € 100 ≥ coins > 0 coins =0 < 0 > 100

0,20 € 100 ≥ coins > 0 coins =0 < 0 > 100

0,10 € 200 ≥ coins ≥ 20 20 > coins ≥ 0 < 0 > 200

no_change total sum of change (ex 2€) < 5

€

total sum of change (ex 2€)

≥ 5 € AND #10 Cent coins ≥

20
#10 Cent coins < 20

7

Software Quality Assurance – Test of Object-Oriented Software

© Prof. Dr. Liggesmeyer

Object-Oriented Unit Test

Test of Individual Operations

• Test Cases for valid equivalence classes

Test case 1 2 3 4 5 6

change 2 € 1 € 0,50 € 0,20 € 0,10 € 0,00 €

coins

2 € 50 1 0 10 0 10

1 € 100 1 0 10 0 10

0,50 € 100 1 0 10 0 10

0,20 € 100 1 10 0 9 10

0,10 € 200 20 1 19 4 40

no_change change ≥ 5 €

#10 Cent ≥ 20

change < 5 €

#10 Cent ≥ 20

change < 5 €

#10 Cent < 20

change ≥ 5 €

#10 Cent < 20

change < 5 €

#10 Cent < 20

change ≥ 5 €

#10 Cent ≥ 20

Result 1*2 €

don‘t activate

no_change

1*1 €

activate

no_change

2*0,20 €

1*0,10 €

activate

no_change

2*0,10 €

activate

no_change

1 * 0,10 €

activate

no_change

don‘t activate

no_change

8

Software Quality Assurance – Test of Object-Oriented Software

© Prof. Dr. Liggesmeyer

Object-Oriented Unit Test

Test of Individual Operations

• Test cases for invalid equivalence classes

Test case 7 8 9 10 11 12 13 14 15 16 17

change 1 € 1 € 1 € 1 € 1 € 1 € 1 € 1 € 1 € 1 € -0,10 €

coins

2 € 51 10 20 10 10 -1 20 30 20 14 10

1 € 10 101 20 10 10 10 -1 10 10 10 10

0,50 € 10 1 101 10 10 10 30 -1 22 24 10

0,20 € 10 1 10 101 9 10 40 2 -1 8 10

0,10 € 30 42 30 40 201 10 50 49 30 -1 50

9

Software Quality Assurance – Test of Object-Oriented Software

© Prof. Dr. Liggesmeyer

Object-Oriented Unit Test

Class Test

• Usually, operations have to be tested in the context of their class

• The operations of an object of a class interact via shared attributes

• The values of the attributes define the present state of the object

state machines are appropriate means for specification

state machines can serve also as the basis for testing

• Field of application: Testing of operation sequences

10

Software Quality Assurance – Test of Object-Oriented Software

© Prof. Dr. Liggesmeyer

Object-Oriented Unit Test

Class Test

select_cup (no)

when

(paid_amount ≥ price)

cur_state:

ready
cur_state:
drink_chosen

cur_state:
amount_paid

cur_state:
paym._sufficient

cur_state:
dispense_drink

dispense_change /
dispense_change(paid_amount),

reset_drink, reset_price, reset_amount

Insert_coin(A) /

add_amount(A)

select_drink(D) /
P:= determine_price(D)
display_amount(P)

select_drink(D) /
P:= determine_price(D),
display_amount (P)

select_cup(yes) /

dispense_cup
/ dispense_drink
(chosen_drink)
remainder:= calculate_change
(paid_amount, price),

chosen_drink: D
price: P=price(D)
paid_amount: 0

chosen_drink: ""

price: 0

paid_amount: 0

chosen_drink: D

price: price(D)

paid_amount:
amount_old + A

chosen_drink: D

price: price(D)

paid_amount:
amount_old

chosen_drink: D

price: price(D)

paid_sum:
amount_old

Timeout/

reset_drink,

reset_price,

reset_amount

Insert_coin(A) /

add_amount(A)

dispense_change /
dispense_change(remainder),

reset_drink, reset_price, reset_amount

dispense_change(remainder),

reset_drink, reset_price,

reset_amount

11

Software Quality Assurance – Test of Object-Oriented Software

© Prof. Dr. Liggesmeyer

Object-Oriented Unit Test

Class Test

• Hierarchy of completeness criteria
• coverage of all states at least once

• coverage of all transitions at least once

• coverage of all events at all transitions at least once

• Hierarchy

• all events  all transitions  all states

• Important: Do not forget to test the error handling

12

Software Quality Assurance – Test of Object-Oriented Software

© Prof. Dr. Liggesmeyer

Object-Oriented Unit Test

Class Test

• Control flow test techniques (e.g. branch coverage test) are relatively

inappropriate, because they disregard the interactions between operations

through shared attributes

• Data flow test techniques are more appropriate

• The attributes are written (defined) and read (used) by operations. A data flow test

based on the attributes demands to test interactions concerning the shared data

13

Software Quality Assurance – Test of Object-Oriented Software

© Prof. Dr. Liggesmeyer

Object-Oriented Unit Test

Class Test

select_cup(no)

when

(paid_amount ≥ price)

cur_state:

ready
cur_state:
drink_chosen

cur_state:
amount_paid

cur_state:
paym._sufficient

cur_state:
dispense_drink

dispense_change /
dispense_change(paid_amount),

reset_drink, reset_price, reset_amount

Insert_coin(A) /

add_amount(A)

select_drink(D) /
P:= determine_price(D)
display_amount(P)

select_drink(D) /
P:= determine_price(D),
display_amount(P)

select_cup(yes) /
dispense_cup

/ dispense_drink
(chosen_drink)
remainder:= calculate_change
(paid_amount, price),

chosen_drink: D
price: P=price(D)
paid_amount: 0

chosen_drink: ""

price: 0

paid_amount: 0

chosen_drink: D

price: price(D)

paid_amount:
amount_old + A

chosen_drink: D

price: price(D)

paid_amount:
amount_old

chosen_drink: D

price: price(D)

paid_sum:
amount_old

Timeout/

reset_drink,

reset_price,

reset_amount

Insert_coin(A) /

add_amount(A)

dispense_change /
dispense_change(rest_amount),

reset_drink, reset_price, reset_amount

dispense_change(remainder),

reset_drink, reset_price,

reset_amount

14

Software Quality Assurance – Test of Object-Oriented Software

© Prof. Dr. Liggesmeyer

Object-Oriented Unit Test

Class Test

structural test

1

2

3

M1(...)

M2(...)

M1(...)

M3(...)

M4(...)

State-based test

M3

equivalence

class partitioning

15

Software Quality Assurance – Test of Object-Oriented Software

© Prof. Dr. Liggesmeyer

Object-Oriented Integration Test

Base Classes

• Questions
• Does the interface between two objects work in both directions (passing of parameters and results)?

• Idea
• Coverage of the specification in both directions

• Generation of test cases
• which cover the different parameters, that might be used by the calling object

• which cover the different return values generated by the service provider

 Equivalence class partitioning of the interface between service user and service

provider

16

Software Quality Assurance – Test of Object-Oriented Software

© Prof. Dr. Liggesmeyer

Object-Oriented Integration Test

Integration Test of Base Classes

• Example: Integration test of the objects „coin checking device" and „machine

control"

: coin checking device

: customer operating unit

: machine control

: change dispenser

: drink/cup dispenser

: service operating unit

dispense_drink()

dispense_cup()

select_cup()

give_change()

select_drink()

display_amount()

drinks_sold_out()

no_cups()

no_change()

determine_price() insert_coin() dispense_change()

17

Software Quality Assurance – Test of Object-Oriented Software

© Prof. Dr. Liggesmeyer

Object-Oriented Integration Test

Integration Test of Base Classes

• Test of the interaction of the classes coin checking device and machine control

via the message insert_coin()
• Interface specification of the operation insert_coin()

• The operation insert_coin() expects a non-negative value (maximum value = 1000). It specifies

the value of the coin in cents

• The operation has no return value

• Interface parameters of the calling routine at the coin checking device

• The following values may be used for the interface of the message insert_coin(): 10, 20, 50,

100, 200

18

Software Quality Assurance – Test of Object-Oriented Software

© Prof. Dr. Liggesmeyer

Object-Oriented Integration Test

Integration Test of Base Classes

• Consequences for the integration test
• It has to be ensured that the value of the interface parameter fulfills the following condition (so-called

assertion)

• (value ≥ 0) AND (value ≤ 1000)

• Equivalence classes and test cases

• value = 10

• value = 20

• value = 50

• value = 100

• value = 200

• Testing of the return value is not possible as no return values exist

19

Software Quality Assurance – Test of Object-Oriented Software

© Prof. Dr. Liggesmeyer

Object-Oriented Integration Test

Integration Test and Inheritance

• Situations
• Inheritance at the service provider

• Inheritance at the service user

• Inheritance at the service provider and at the service user

20

Software Quality Assurance – Test of Object-Oriented Software

© Prof. Dr. Liggesmeyer

Object-Oriented Integration Test

Integration Test and Inheritance - Example

• In the new version of the refreshments vending machine it is possible to pay with
money bills (5 Euros and 10 Euros). The following changes are made
• A class coin checking device/bill reader is implemented. The operation checking() is augmented

w.r.t. checking bills. This operation overwrites the original operation. A new operation
accept_no_bills() is added, that disables or enables the acceptance of bills

• The class change dispenser gets a subclass, with a new operation dispense_change(), that
overwrites the old operation. The new operation signals whether it is possible to pay with bills. The
payment with bills is disabled if the money stock in coins falls below 15 Euros. Bills are not returned
as change

• The class customer operating unit gets a subclass which contains a new operation signal_no_bills().
This operation signals whether it is possible to pay with bills

21

Software Quality Assurance – Test of Object-Oriented Software

© Prof. Dr. Liggesmeyer

Object-Oriented Integration Test

Integration Test and Inheritance

: coin checking device/

bill reader

: customer operating unit/bills

: machine control

: change dispenser/bills

: drink/cup dispenser

: service operating unit

dispense_drink()

dispense_cup()

select_cup()

give_change()

select_drink()

display_amount()

drinks_sold_out()

no_cups()

no_change()

determine_price() insert_coin() dispense_change()

signal_no_bills()

accept_no_bills()

22

Software Quality Assurance – Test of Object-Oriented Software

© Prof. Dr. Liggesmeyer

Object-Oriented Integration Test

Inheritance at the Service Provider

• Situation
• Integration test of the service user and the superclass of the service provider is executed according

to the procedure for the integration test of base classes

• Problem
• Operations of the service provider can be inherited from the superclass (the old service provider), but

not necessarily. Methods of the new service provider as well as methods of the old service provider

(the super class) can be executed

23

Software Quality Assurance – Test of Object-Oriented Software

© Prof. Dr. Liggesmeyer

Object-Oriented Integration Test

Inheritance at the Service Provider

• Procedure
• No additional test cases for inherited operations, as this case is covered already by the integration

test of the base classes  repeat test cases

• No additional test cases concerning overwritten operations for which only the implementation has

changed, as the interface specification remained identical and this case is also covered yet 

repeat test case

24

Software Quality Assurance – Test of Object-Oriented Software

© Prof. Dr. Liggesmeyer

Object-Oriented Integration Test

Inheritance at the Service Provider - Input Interface (parameters)

• If the interface specification of the overwriting method has changed, the following

cases are to be distinguished
• The interface of the overwriting method is more specific (i.e. accepts less data) than the interface of

the overwritten method

• Definition of a new assertion

• Repetition of all test cases from the integration test of the base classes

• If the interface becomes more general by the overwriting of the method no additional test cases are

required, as this case is covered already by the test of the base classes  repeat test cases

25

Software Quality Assurance – Test of Object-Oriented Software

© Prof. Dr. Liggesmeyer

• If necessary, additional test cases for the coverage of a wider interface which was

not covered sufficiently during the test of the base classes

• Example: Enhanced version of the refreshments vending machine
• The new change dispenser is a service provider (dispense_change()) concerning the machine

control

• The overwriting operation dispense_change() has only a modified implementation (transmission of

additional messages). The interface specification is unchanged

• It is sufficient to repeat the old test cases. The assertion is unchanged

26

Object-Oriented Integration Test

Inheritance at the Service Provider - Output Interface

(parameters), Example

Software Quality Assurance – Test of Object-Oriented Software

© Prof. Dr. Liggesmeyer

Object-Oriented Integration Test

Inheritance at the Service User - Output Interface

(parameters)

• No additional test cases for inherited operations  repeat test cases

• No additional test cases if the interface of the overwriting operation in call

direction is more specific than the interface of the overwritten operation (i.e. calls

which were possible before are not possible anymore)  repeat test cases

• If the interface becomes wider (i.e. calls which were not possible before are

possible now) the old test cases are to be enriched accordingly  repeat old test

cases and execute new test cases additionally

• Comment: the assertion is unchanged

27

Software Quality Assurance – Test of Object-Oriented Software

© Prof. Dr. Liggesmeyer

Object-Oriented Integration Test

Inheritance at the Service User - Input Interface (results)

• Repeat test cases. If a failure occurs due to a more specific interface, an

appropriate correction is required

28

Software Quality Assurance – Test of Object-Oriented Software

© Prof. Dr. Liggesmeyer

Object-Oriented Integration Test

Inheritance at the service provider and at the service user

• Procedure
• Apply technique to deal with inheritance at the service provider

• Apply technique to deal with inheritance at the service user

• Add test cases for the new interactions between service provider and service user

29

Software Quality Assurance – Test of Object-Oriented Software

© Prof. Dr. Liggesmeyer

Object-Oriented Integration Test

Inheritance at the service provider and at the service user

• Between the derived classes change dispenser/bills and coin checking device/bill

reader there is a service provider-service user-relation. Additionally to the

described tests, the interaction by the message accept_no_bills() has to be tested

• Test cases
• accept_no_bills(yes)

• accept_no_bills(no)

30

Software Quality Assurance – Test of Object-Oriented Software

© Prof. Dr. Liggesmeyer

Object-Oriented Integration Test

Inheritance and Integration Test: Summary

• Table 0 (start table) for handling inheritance

service user service provider action

unmodified unmodified repeat test cases

unmodified generated by inheritance evaluate tables 1.1 and

1.2

generated by inheritance unmodified evaluate table 2

generated by inheritance

generated by inheritance

evaluate tables 1.1, 1.2

and 2; add test cases for

interaction of the

subclasses

31

Software Quality Assurance – Test of Object-Oriented Software

© Prof. Dr. Liggesmeyer

Object-Oriented Integration Test

Inheritance and Integration Test: Summary

• Table 1.1: Testing the call interface

service providing

operation

call interface of the

service providing

operation

action

inherited - repeat test cases

overwriting identical repeat test cases

overwriting

more specific new assertion;

repeat test cases

overwriting more general repeat test cases

32

Software Quality Assurance – Test of Object-Oriented Software

© Prof. Dr. Liggesmeyer

Object-Oriented Integration Test

Inheritance and Integration Test: Summary

• Table 1.2: Testing the return interface

33

service providing

operation

return interface of the

service providing

operation

action

inherited - repeat test cases

overwriting identical repeat test cases

overwriting

more specific repeat test cases

overwriting more general repeat test cases;

generate additional test

cases

Software Quality Assurance – Test of Object-Oriented Software

© Prof. Dr. Liggesmeyer

Object-Oriented Integration Test

Inheritance and Integration Test: Summary

• Table 2: test of the call and the return interface

34

service using operation call interface of the

service using operation

action

inherited - repeat test cases

overwriting identical repeat test cases

overwriting

more specific repeat test cases

overwriting more general repeat test cases;

generate additional test

cases

Software Quality Assurance – Test of Object-Oriented Software

© Prof. Dr. Liggesmeyer

Object-Oriented System Test

• Except for the specification-based test there are no differences compared to the

test of classic software
• The system is a black box  it is irrelevant, whether its internal structure is object-oriented or not

• Development of specification-based test cases from OOA-diagrams
• DFDs

• State machines

• Use cases according to Jacobson

• Scenarios from a system user‘s viewpoint (human or other system)

• Not very systematic

• No completeness in complicated systems

• Can be annotated with time conditions (MSCs)  performance test!

35

