
1

Seite 1

 Prof. Dr. Liggesmeyer, 1Safety and Reliability of Embedded Systems

Safety and Reliability of Embedded Systems

(Sicherheit und Zuverlässigkeit eingebetteter Systeme)

Introduction

 Prof. Dr. Liggesmeyer, 2Safety and Reliability of Embedded Systems

� Paradigm-change in the automotive business

� Ariane 5

� Therac-25

� Definition of our research topic and focus

� Situation analysis of software development in practice

� Consequences

� Summary of available techniques

Content

2

Seite 2

 Prof. Dr. Liggesmeyer, 3Safety and Reliability of Embedded Systems

� The majority of microprocessors is installed in technical (embedded)
systems (varying statements on the number, but surely more than
90%)

� Many of these systems are not safety-critical (e.g. cellular phone)

� Others are safety-critical
� Aircrafts

� Trains

� Cars

� Medical equipment

� ...

� Reliability and availability are always important

Motivation

 Prof. Dr. Liggesmeyer, 4Safety and Reliability of Embedded Systems

Motivation
Paradigm-change in the automotive business

3

Seite 3

 Prof. Dr. Liggesmeyer, 5Safety and Reliability of Embedded Systems

June 4., 1996, Kourou / Fr. Guyana:
Maiden flight of the Ariane 5

...

declare

vertical_veloc_sensor: float;

horizontal_veloc_sensor: float;

vertical_veloc_bias: integer;

horizontal_veloc_bias: integer;

...

begin

declare

pragma suppress(numeric_error, horizontal_veloc_bias);

begin

sensor_get(vertical_veloc_sensor);

sensor_get(horizontal_veloc_sensor);

vertical_veloc_bias := integer(vertical_veloc_sensor);

horizontal_veloc_bias := integer(horizontal_veloc_sensor);

...

exception

when numeric_error => calculate_vertical_veloc();

when others => use_irs1();

end;

end irs2;

Motivation
Ariane 5

 Prof. Dr. Liggesmeyer, 6Safety and Reliability of Embedded Systems

� Cause
� 37 sec. after engine start (30 sec. after liftoff) Ariane 5 had a horizontal

velocity of 32768.0 (internal units). The integer conversion of the 64-bit
floating point variable caused a data overflow. The second flight
controller experienced the same problem 72 msec before and thus was
not operational at that time. Diagnosis data were propagated to the main
flight computer. These data were interpreted as valid flight data. Incorrect
steering commands were sent. These caused a mechanical overload and
finally Ariane 501 exploded.

� Effect
� Total financial loss of 850 Million Euro

Motivation
Ariane 5

4

Seite 4

 Prof. Dr. Liggesmeyer, 7Safety and Reliability of Embedded Systems

� Therac-25 was a linear accelerator released in 1982 for cancer
treatment by emitting limited doses of radiation

� This new model was software-controlled as opposed to hardware-
controlled; previous units had software merely for convenience

� Controlled by a PDP-11 computer; software controlled safety

� In case of error, the software was designed to prevent harmful
effects

� However, in case of software error, cryptic codes were given back
to the operator: “MALFUNCTION xx”, where 1 < xx < 64

� Operators were rendered insensitive to the errors; they happened
often, and they were told it was impossible to overdose a patient

� However, from 1985-1987, six people received massive overdoses
of radiation; at least three of them died

Motivation
Therac-25

 Prof. Dr. Liggesmeyer, 8Safety and Reliability of Embedded Systems

� Main cause
� Race condition often happened when operator entered data quickly,

then hit the UP arrow key to correct, and values weren’t reset properly

� AECL (the company) never noticed quick data-entry – their people didn’t
do this on a daily basis

� Apparently the problem existed in previous units, but they had a
hardware interlock mechanism to prevent it; here, they trusted the
software and took out the hardware interlock

Motivation
Therac-25

5

Seite 5

 Prof. Dr. Liggesmeyer, 9Safety and Reliability of Embedded Systems

� Overconfidence in software, especially for embedded systems

� Reliability is not equal to safety

� No defensive design, bizarre error messages

� They just “bugfixed”, and didn’t look for root causes

� Improper software engineering practices
� Most testing, in reality, was done in a simulated environment and a

complete unit; little if any unit and software testing

� They claimed 2700 hours of testing; it was really 2700 hours “of use”

� Overly complex, poorly organized design

� Blind software reuse

Motivation
Lessons from Therac-25

 Prof. Dr. Liggesmeyer, 10Safety and Reliability of Embedded Systems

� It is difficult to develop large, complex software and to guarantee that
this software does not cause problems during operation

� If problems occur, these may cause catastrophic effects in technical
application domains

Our research topic:
Software Engineering for Technical Applications

Focus:
Quality Management and Quality Assurance, i.e.,

Safety, Reliability, Availability and Real-Time Behavior
of Critical Software-Based Systems

(e.g. Transportation, Medical Systems, Industrial Automation)

Motivation

6

Seite 6

 Prof. Dr. Liggesmeyer, 11Safety and Reliability of Embedded Systems

� Question: Who ensures that system development is perfectly done?

� Answer: Nobody!

� Consequence: The development is not complete with the
implementation. Quality assurance is needed.

� Typical approaches
� Ensure that the development processes are suitable

=> Quality management

� Ensure that the development steps provided the desired results

=> Quality assurance (can also be done more or less formally and in a
quantified or non-quantified manner)

Situation Analysis of Software Development in Practice

 Prof. Dr. Liggesmeyer, 12Safety and Reliability of Embedded Systems

� According to M. Cusumano the defect rate of software shows the
following trend (defects in 1000 lines of source code)
� 1977: on average 7- 20 defects

� 1994: on average 0,2 - 0,05 defects

� In 13 years the defect rate could be lowered about 100 fold (but the size
of software products increased)

Situation Analysis of Software Development in Practice

7

Seite 7

 Prof. Dr. Liggesmeyer, 13Safety and Reliability of Embedded Systems

According to data from:
Jones C., Applied software
measurement, New York:
McGraw-Hill 1991

Coding

Modeling and
Documentation

Management

0

50

100

0,
9

1,
5

1,
6

4,
4

8,
1 20 55

14
9

40
5

10
99

29
94

81
92

30
11

8

81
92

0

Development Effort (MM)

%

12

33

1811
5

68

Quality Assurance 37
16

Situation Analysis of Software Development in Practice
Increasing Importance of Quality Assurance

 Prof. Dr. Liggesmeyer, 14Safety and Reliability of Embedded Systems

� Software (and systems) quality has to be assured
� Evaluation, validation and improvement of development processes

� Accompanying quality assurance during the early development phases

� Testing of the implemented software (the code)

� The software is large => several test phases are required

Consequences

8

Seite 8

 Prof. Dr. Liggesmeyer, 15Safety and Reliability of Embedded Systems

� Highly varying demands on software (experimental prototype up to
engine control of a commercial aircraft) => need of different methods
between „trial" and „proof"

� It is not possible to guarantee that code is fault-free => it is required
to determine the residual risks => quantitative analysis methods

Consequences

 Prof. Dr. Liggesmeyer, 16Safety and Reliability of Embedded Systems

� Modeling techniques
� FMEA, FMECA: Identification of critical functions, blocks, modules, …;

no real quantified results

� Reliability block diagrams: Quantified results on reliability; not really
applicable to software

� Fault trees: Formal technique based on boolean logic and statistics;
quantified results

� Markov analysis and stochastic Petri nets: Formal technique (augmented
state machines), quantified results

� Analytical techniques
� Simulation, testing: Incomplete, no dependable results

� Stochastic analysis: Commonly used for hardware, no widespread use
for software

� Formal verification: Complete (for certain fault-classes), but complicated

Available techniques

