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Safety and Reliability of Embedded Systems
(Sicherheit und Zuverlässigkeit eingebetteter Systeme)

Stochastic Reliability Analysis
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Definition

Reliability
Part of the quality with regard to the behavior of an entity during or after 
given time intervals under given application conditions (translated from 
DIN 40041)
The property of an entity to fulfill its reliability requirements during or after 
a given time span under given application conditions (translated from 
DIN ISO 9000 Teil 4)
A measure for the capability of an item under consideration to remain 
functional, expressed by the probability that the demanded function is 
executed without failure under given conditions during a given time span 
(Birolini)
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Hardware Reliability (typical 
assumptions)

Failures are a result of physical 
degradation
When the faulty component is 
substituted, the reliability 
becomes the initial value of this 
component
The reliability of the system 
does not exceed the initial 
value of the system reliability 
through the substitution of 
components with new 
components
Hardware reliability is 
determined by fairly constant 
parameters

Hardware- vs. Software Reliability

1

T2

T3
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Hardware- vs. Software Reliability

Software Reliability (typical assumptions)
Failures are a result of design errors that are contained in the product 
from the start and appear accidentally
After fault correction the system reliability exceeds its initial value (under 
the assumption that no additional faults are introduced)
Faults that are introduced during debugging decrease reliability
Reliability parameters are assumed to vary

T1
T2

T3

© Prof. Dr. Liggesmeyer, 6Safety and Reliability of Embedded Systems

How reliable is 
my system now?
How reliable will 
it be at the 
planned release 
date?
How many 
failures will have 
occurred by 
then?
... 

Tool Assisted Reliability Modeling

© Prof. Dr. Liggesmeyer, 7Safety and Reliability of Embedded Systems

Tool Assisted Reliability Modeling

Use of models
Which models do exist?
How can I find out, which model fits my purposes best? 
How can I define the model parameters in order to get dependable
reliability predictions? 
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Failure times
Time intervals between failures
Total number of failures at a point in time
Failures within a given time interval

Description of failure over time

t

t'1 2 3 i-1 i
T1' T2' T3' Ti'

T1 T2 T3 TiTi-1

Ausfallzeitpunkte

0

Zeitintervalle zwischen Ausfällen Anzahl Ausfälle

Failure Times

Intervals Between Failures Number of Failures
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Lifetime T
Large number of similar systems under consideration
Simultaneous start of the systems at time t = 0
Observed time of the first failure of each system is the so-called lifetime T 
of this system
Plot of the fraction of failed systems over t is the so-called empirical 
distribution function of the lifetime (or empirical life distribution)

Modeling of Reliability
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If the number of systems becomes larger (approximates infinity), the empirical 
life distribution approximates the life distribution F(t)

Here, lifetime T is a random variable and F(t) is the probability that an arbitrary 
system is not operational at t
F(t) = P{T ≤ t}
F(t) is the probability that lifetime T is less or equal to t, meaning that a system 
has already failed by t. 
We use the following assumptions:

F(t = 0) = 0, i.e. a new system is intact, and
lim F(t) = 1, i.e. every system fails sometimes

Failure Times of 10 Systems 

Modeling of Reliability

t → ∞

F(t)
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Life distribution F(t)

Modeling of Reliability
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Reliability function R(t)
F(t) gives the probability that at time t at least one failure has occurred; 
thus R(t) = 1 - F(t) is the probability that at time t no failure has occurred 
yet

Probability density f(t)
The probability density f(t) describes the modification of the probability 
that a system fails over time 

ƒ(t) =

Modeling of Reliability

d F(t)
dt
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MTBF, MTTF
A relevant measure for reliability is the Mean Time To Failure (MTTF) or 
Mean Time Between Failure (MTBF)
The MTTF resp. MTBF defines the mean value of the lifetime resp. the 
mean value for the time interval between two successive failures
It is determined by calculating the following integral:

T = E(T) =    t f(t) dt

Failure rate
The failure rate is the relative boundary value of failed entities at time t in 
a time interval that approximates zero, referring to the entities still 
functional at the beginning of the time interval 

λ(t) =        =                  =

Modeling of Reliability

ƒ(t)
R(t)

dF(t) / dt
R(t)

- dR(t) / dt
R(t)

∞
∫
0
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The conditional probability that a system that operated failure free 
until t also survives the period Δt is

Thus, the probability that the product fails within Δt is

1 - = 1 - =                                    =

Modeling of Reliability

R(t + Δt)
R(t)

R(t + Δt)
R(t)

1- F(t + Δt)
1 - F(t)

1 – F (t) – (1 - F(t + Δt))
1 - F(t)

F(t + Δt) – F(t)
1 - F(t)
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Modeling of Reliability

As the given probability for short time intervals Δt is proportional to Δt, 
we divide the term by Δt and determine the boundary value when Δt 
approximates 0

Thus the probability that a system, that is operational at time t fails 
within the (short) time interval Δt, is approximately Δt λ(t)

F(t + Δt) – F(t)
1 - F(t)

lim
Δt → 0

1
Δt = 1

R(t)
lim

Δt → 0
F(t + Δt) – F(t)

Δt = f(t)
R(t) = λ(t)
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R(t) and failure rate

Modeling of Reliability
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Assumption: For the given data (table p. 10) lifetime is exponentially 
distributed: F(t) = 1 – e-λt

The parameter λ (failure rate) has to be determined based on failure 
observations in order to achieve an optimal adjustment of the 
function, according to a predetermined criterion. The Maximum-
Likelihood-Method provides the following parameter λ for the 
exponential distribution:

λ =          = 0,0000353 / h

Reliability: R(t) = 1 – F(t) = e-λt

Example for the Distribution Function

N
N

Σ Ti
i = 1
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The failure rate λ is constant over time

λ(t) =        =               =                 =           = λ

A constant failure rate causes an exponential distribution of the 
lifetime
Determination of the MTTF

T = E(T) =    t ƒ(t) dt =    t λ e-λt dt = λ t e-λt dt = λ (-λ t – 1)  =

If lifetime is exponentially distributed, the MTTF is the reciprocal of the 
failure rate and thus constant

Example for the Distribution Function

ƒ(t)
R(t)

dF(t) / dt
R(t)

- dR(t) / dt
R(t)

λ e-λt

e-λt

∞
∫
0

∞
∫
0

∞
∫
0

λ e-λt

λ2

∞

0

1
λ
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The Exponential Distribution

Life distribution: F(t) = 1 - e-λt

Density function: ƒ(t) = λ e-λt

Reliability function: R(t) = 1 - F(t) = e-λt

Failure rate: λ(t) = λ

MTTF: T = 
1
λ
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Life Distribution : F(t) = 1 – e-(λt)β ; λ, β > 0

or:
F(t) = 1 – e      ; α, β > 0, d. h.     = λβ

Density:

ƒ(t) =         = λ β (λ t)β - 1 e-(λt)β

Reliability: R(t) = e(-λt)β

Failure rate: 

λ(t) =         = λ β (λ t)β - 1

The Weibull Distribution

1
α- t β 1

α

dF(t)
dt

ƒ(t)
R(t)
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Failure rate of the Weibull distribution depending on the form parameter β

The Weibull Distribution
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The Poisson Distribution

Assumptions
The probability of more than one failure within the (short) time interval 
Δt can be ignored. Thus, failures occur relatively infrequently 
The probability of a failure within Δt, respectively within [t, t + Δt], is λ
Δt (see definition of failure rate). The probability is proportional to the 
length of the time interval
Px(t) is the probability, that within time interval [0, t] x failures occur
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The Poisson Distribution

No failures
The probability that within time interval [0, t+Δt] no failures occur is 
determined by multiplying the probability that until time t no failures have 
occurred (P0(t)) and the probability that within [t, t+Δt] no failures occur 
(1-λ Δt):

For Δ t towards 0 one receives: 

P0(0) = 1, since new systems (t=0) are always operational by definition. 
For a constant value of λ and P0(0) = 1 the differential equation has the 
solution:

( ) ( )( ) ( ) ( ) ( )tP
t

tPttPttPttP 0
00

00 1 λλ −=
Δ

−Δ+⇔Δ−=Δ+

( ) ( ) ( ) ( )tP
dt

tPd
t

tPttP
t 0

000

0
lim λ−==

Δ
−Δ+

→Δ

( ) tetP λ−=0
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The Poisson Distribution

The probability that a new system shows no failures until t is R(t)

Using the definitions for F(t) and f(t), we get: 

( ) ( ) tetPtR λ−== 0

( ) ( ) ( ) ( )1 1 t tdF t
F t R t e and f t e

dt
λ λλ− −= − = − = =
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The Poisson Distribution 

Failures
The probability that within time interval [0, t+Δt] x failures occur can be 
determined as follows:

( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )

0

2

1

...

2

1

x

x

x

x

P t t P t P x failures between t and t t

P t P failures between t and t t

P t P failure between t and t t

P t P no failure between t and t t

−

−

+ Δ = + Δ⎡ ⎤⎣ ⎦
+

+ + Δ⎡ ⎤⎣ ⎦
+ + Δ⎡ ⎤⎣ ⎦
+ + Δ⎡ ⎤⎣ ⎦
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The Poisson Distribution

Due to the precondition the probability to observe more than one failure 
in Δt is zero. Therefore we get:

( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

1

1

1

1

1

x x

x

x x

x x x

x x
x x

P t t P t P failure between t and t t

P t P no failure between t and t t

P t t P t t

P t t P t P t

P t t P t
P t P t

t

λ λ

λ

λ

−

−

−

−

+ Δ = + Δ⎡ ⎤⎣ ⎦
+ + Δ⎡ ⎤⎣ ⎦

= Δ + − Δ

= − Δ −⎡ ⎤⎣ ⎦
⇔

+ Δ −
= − −⎡ ⎤⎣ ⎦Δ
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The Poisson Distribution

With Δt approximating zero:

The following term for Px(t) is a solution for this differential equation

(Poisson Distribution)

( ) ( ) ( ) ( ) ( )[ ]tPtP
dt

tdP
t

tPttP
xx

xxx

t 10
lim −→Δ

−−==
Δ

−Δ+ λ

( ) ( )
!x
ettP

tx

x

λλ −

=
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The Poisson Distribution

This can be shown very easily

The probability PX(t) provides the correct value P0(t) also for the case 
that we treated separately before

( )
( )

( ) ( ) ( )

( ) ( )
( ) ( ) ( )[ ]tPtP
x

et
x
et

x
etetx

dt
x
etd

dt
tdP
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txtx

txtx

tx

X
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1
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!
!

−

−−−

−−−

−

−−=⎥
⎦

⎤
⎢
⎣

⎡

−
−−=

−+==

λλλλ

λλλλ
λ

λλ

λλ

λ

( ) ( ) ( )tPeet
dt

tdP t
t
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X
0

0

0 !0
=== −

−

=
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The Poisson Distribution

PX(t) fulfills the boundary conditions for t = 0, i.e. P0(0) = 1 and PX(0) = 
0, for x ≥ 1. Furthermore the sum of the probabilities of all x ≥ 0 for 
every t ≥ 0 must be 1, i.e.

The specified sum on the left hand side of the equation is the power 
series of the exponential function on the right hand side. The Poisson 
Distribution thus fulfills the preconditions. If λ is constant, the mean 
value is μ(t)=λt. This is called a homogeneous Poisson Process. If λ
is a function of time, the mean value is

This is called a non-homogeneous Poisson Process (NHPP)

( ) ( ) ( ) ( ) t

x
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x
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x
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The time of failure i is Ti

The time interval between failure (i - 1) and failure i is Ti‘

Ti =      Tj‘, T0 = 0

M(t) is the number of failures at t

Failure Times and Times between Failures

i

Σ
j = 1

( )[ ] [ ]tTitM i ≤⇔≥
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Failure Times and Times between Failures

The probability for j failures until time t is

The probability for at least i failures at t is

( ) ( )[ ] ( )( ) ( )

!j
etjtMPtP

tj

j

μμ −

===

( )[ ] ( )( ) ( )
[ ]tTP

j
etitMP i

ij

tj

≤==≥ ∑
∞

=

−

!

μμ
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Musa's Execution Time Model

A software system fails due to errors in the software randomly at t1, 
t2, ... (t here refers to execution time, i. e. CPU-seconds)

It is assumed that the number of failures observed in Δt is linearly 
proportional to the number of faults contained in the software at this time
μ(t) is the total number of failures for times t ≥ 0 
μ(t) is a limited function of t
The number of failures is a monotonic increasing function of t
At t=0 no failures have been observed yet: μ(0)=0 
After very long execution time (t → ∞) the value μ(t) is equal to a. a is the 
total number of failures in infinite time. (There are also models where 
infinite numbers of failures are assumed to happen)
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Musa's Execution Time Model 

Model development
The number of failures observed in a time interval Δt is proportional to Δt 
and to the number of errors not yet detected

With Δt → 0 we get: 

With μ(0)=0 and μ(∞)=a we get: 

The failure rate is: 

( ) ( ) ( )[ ] ( ) ( ) ( )tbba
t

tttttabttt μμμμμμ −=
Δ

−Δ+
⇒Δ−=−Δ+

( ) ( ) ( )ttbba
dt

td 'μμμ =−=

( ) ( )bteat −−= 1μ

( ) ( ) btabett −== 'μλ
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Musa's Elementary Execution Model

The curve for the accumulated number of failures μ(t) approximates 
asymptotically the expected total number of failures a

a

(t)

t

ab = (t=0)

(t)

t
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Musa's Elementary Execution Model

The curve for the failure rate λ(t) for t = 0 starts at the initial failure 
rate λ0 = ab and approximates asymptotically the value 0. The initial 
failure rate is proportional to the expected number of failures a, with 
the constant of proportionality b 
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Musa's Execution Time Model
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Musa's Execution Time Model

If λ is the present failure rate and a target λz is defined, Δμ additional 
failures will occur until this target is reached

The additional time Δt until this target is reached is
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If 

is inserted into the general equation of the Poisson distribution, we 
get:

Musa's Execution Time Model
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For a program with an expected total number of 300 failures with an initial 
failure rate of 0,01/CPU-second, models are to be generated
What is the probability that at a particular execution time at least a certain 
number of failures will have occurred?
Formula for P[Ti ≤ t] 
for 1, 2 and 3 failures 

Examples of Modeling
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What will be the number of failures w.r.t. execution time?
Formula for μ(t)

Examples of Modeling
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How will the failure rate develop depending on the execution time?
Formula for λ(t)

Examples of Modeling
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Least squares
Target: Define parameters in such a way that the sum of the squares of 
the deviations between the calculated and the observed values becomes 
minimal. If Fi refers to the value of the empirical distribution function at 
point ti, the following term is to be minimized:

Maximum-Likelihood-Method
Target: Choose parameters in such a way that the probability is 
maximized to produce a "similar" observation to the present observation. 
The probability density has to be known

Determination of Model Parameters

( )( )
2

11

2 ∑∑
==

−=Δ=Δ
n

i
ii

n

i
i FtF
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Determination of Model Parameters 
Least squares

Target: Define parameters in such a way that the sum of the squares 
of the deviations between the calculated and the observed values
becomes minimal. If Fi refers to the value of the empirical distribution 
function at point ti, the following term is to be minimized:

For the exponential distribution we get:
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Determination of Model Parameters 
Least squares 

The value λ that minimizes this term is to be determined

The value     is calculated by determining the root
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Determination of Model Parameters 
Least squares

Sometimes numerical method must be used for this task. A Newtonian 
iteration provides the following results for the Exponential Distribution

with:

and:

For the failure times of the table on page 10 the search for zero points 
according to the Newtonian iteration provides a value    ≈ 3,9326702 * 10-5/h 
for the exponential distribution
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Target: Choose parameters in such a way that the probability is maximized to 
produce a "similar" observation to the present observation 
Precondition: Probability density has to be known
Likelihood function

Product of the densities at the observed failure times
The value is proportional to the probability to observe failure times that 
do not exceed the deviation Δt w.r.t. the present observation
It is a function of the distribution function's parameters that are to be 
determined 
Example:
The parameter λ of the exponential distribution is to be determined with 
the Maximum-Likelihood-Method

( ) ( ) tt etfetF λλ λ −− =−= ,1

Determination of Model Parameters 
Maximum-Likelihood-Method
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Determination of Model Parameters 
Maximum-Likelihood-Method

With n observed failure times  t1, ..., tn we get the Likelihood Function:

Due to the monotonicity of the logarithmic function, L und ln L have 
identical maxima

In order to calculate the value     that maximizes the Likelihood 
Function, the derivation according to λ must be determined
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Determination of Model Parameters 
Maximum-Likelihood-Method

is the root. For the exponential distribution we get:λ̂
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Model Selection based on Failure Observations

U-Plot-Method
Prequential-Likelihood-Method
Holdout-Evaluation
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Model Selection based on Failure Observations 
U-Plot

U-Plot
Graphic method that tests whether a distribution function can be
accepted with regard to the present observation 
Additionally, statistical tests (e.g. Kolmogoroff-Smirnov) might be used
If a random variable T is described by the distribution F(t), the F(ti) of the 
random variable are equally distributed over the interval [0,1]
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Model Selection based on Failure Observations 
U-Plot

The n values Ui are charted in a U-Plot as follows
- The values Ui are used as y-values in such a way that the value Ui

with the position j is attributed to the x-value j/n
- If the values Ui are approximately equally distributed, the applied 

points are located "near by" the function y = x, for 
0 ≤ x ≤ 1
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Model Selection based on Failure Observations 
U-Plot

Example

The values presented in the table for F(t) are the Ui according to the definition 
stated above

F(t)

n/N

Ti(h)

0,094

0,1

2810

0,174

0,2

5411

0,264

0,3

8701

0,371

0,4

13130

0,457

0,5

17327

0,9410,8790,7650,6680,585

1,00,90,80,70,6

8001759880400063123024899
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Model Selection based on Failure Observations 
U-Plot

U-Plot of the data

0,1
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0,3
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0,6
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1,0
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0,0
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Model Selection based on Failure Observations
Prequential-Likelihood-Method

The Prequential-Likelihood-Method compares the suitability of two 
distribution functions under consideration with regard to a given 
failure observation
It is based on the following approach

The failure interval tj is a realization of a random variable with the 
distribution Fj(t) and the density fj(t)
Fj(t) and fj(t) are unknown
The densities of the distribution functions A and B 
(           resp.           ) can be determined based on the failure intervals t1, 
... , tj-1
If the distribution A is more suitable than the distribution B, it can be 
expected that the value            is greater than the value    

The quotient              will be greater than 1
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Model Selection based on Failure Observations
Prequential-Likelihood-Method

t

f(t)
fjB(t) fj

A(t)fj(t)

tj

^ ^

fjB(tj)
^
fj

A(tj)^
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Model Selection based on Failure Observations
Prequential-Likelihood-Method

If this analysis is done for every observed failure time interval tj we get 
the so-called Prequential-Likelihood-Ratio concerning the distributions 
A and B

If A is more appropriate than B with regard to the present failure data, 
the PLR shows a rising tendency
Example

We compare the exponential distribution and the normal distribution 
based on the data from the table on page 10 using the Prequential-
Likelihood-Method 
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Model Selection based on Failure Observations
Prequential-Likelihood-Method

The parameters of the distributions are determined using a Maximum-
Likelihood-Approach. For the exponential distribution, we get:

For the normal distribution we get: 

The parameters according to the Maximum-Likelihood-Method are:
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Model Selection based on Failure Observations
Prequential-Likelihood-Method

The following table shows the densities of the exponential distribution 
and the normal distribution for the arrival time intervals ti based on the 
failure times T1 to Ti-1 from the table on page 10
The calculation starts with i = 4. In addition the logarithm of the quotient 
of the densities and the logarithm of the PLRi is contained in the table
The rising of the PLR underlines that the assumption of exponentially 
distributed arrival times for the present data makes more sense than the 
assumption of normally distributed arrival times

© Prof. Dr. Liggesmeyer, 59Safety and Reliability of Embedded Systems

Model Selection based on Failure Observations
Prequential-Likelihood-Method

19,3618,8710,209,7110,004,374,83
log
(PLRi)

0,498,670,49-0,295,63-0,464,83
log
(fiExp/ 
fiNorm)

23620,000008100961017870,0762445581,1
fiNorm/
10-9

7,33,831,352,432,584,874,9
fiExp/
10-6

201371987487766331757241974429329026012810ti(h)

80017598804000631230248991732713130870154112810Ti(h)

10987654321i
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Model Selection based on Failure Observations
Prequential-Likelihood-Method

PLR of the data

15

5

10

20

log(PLRi)

5 6 7 8 9 104 i
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Model Selection based on Failure Observations
Holdout Evaluation

Approach
Only parts of the failure data are used for model calibration. The 
remaining data are used to judge the prediction quality of the calibrated 
model 
If an exponential distribution and  a Weibull distribution are calibrated to 
the first 6 failure times (table p. 10) using a Least-Squares-Algorithm, we 
get the following results:  

Exponential distribution: 

Weibull distribution: 
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Model Selection based on Failure Observations
Holdout Evaluation

The Weibull distribution has – as expected - a better adjustment to 
the failure times T1 to T6. The sum of the deviation squares for the first 
6 failure times is 0,000459 compared to 0,000790 in the exponential 
distribution 
The prediction quality of the Weibull distribution is however worse 
than that of the exponential distribution. The sum of the deviation 
squares for the failure times T7 to T10 is 0,00446 for the Weibull
distribution; for the exponential distribution is only 0,00210. We might 
prefer to use the exponential distribution in order to avoid „over-
calibration“
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Stochastic Reliability Analysis
Summary

Software Reliability can be adequately measured and predicted using 
appropriate models
The use of stochastic reliability models requires some knowledge
w.r.t. the underlying mathematics
Appropriate tools are a precondition for the successful use of 
reliability models


