

software engineering dependability

Safety and Reliability of Embedded Systems

(Sicherheit und Zuverlässigkeit eingebetteter Systeme)

Safety and Reliability Analysis Models: Overview

Content

- Classification
- Hazard and Operability Study (HAZOP)
- Preliminary Hazard Analysis (PHA)
- Event Tree Analysis
- Failure Modes Effects and Criticality Analysis (FMECA) (DIN 25448, IEC 812)
- Reliability Block Diagrams (IEC 61078)
- Fault Tree Analysis (DIN 25424, IEC 61025)
- Markov Analysis (IEC 61165)
 - Markov Chain
 - Markov Processes
- Petri Nets
 - Condition/Event Petri nets
 - State/Transition Petri nets
 - Predicate/Transistion Petri Nets / Coloured Petri Nets
 - Timed Petri Net Types
 - SPN
 - GSPN
 - DSPN

Classification of Safety / Reliability Analysis Techniques

- Focused Property
 - Safety, Reliability, Availability...
- Application Area
- Scope
 - Product / Process, HW / SW, System / Component
- Process Phase
- Search Direction
 - Inductive / Deductive
- Degree of Formality
- Representation
 - Textual, Graphical, Tabular
- Model based: Combinatorial vs. State-Based

HAZOP / PHA

- Hazard and Operability Study (HAZOP)
 - From chemical industry
 - Find potential hazards at early process stage
 - Check every "flow" in preliminary design scheme for deviations
 - Manual search using guide-words (more, less, no, reverse...)
- Preliminary Hazard Analysis (PHA)
 - During requirements analysis or early design phase
 - Coarse identification, classification and counter-measures for potential hazards
 - Table representations

Event Tree Analysis

- Forward-searching technique with graphical representation
- Search consequences to given hazard, depending on conditions

	Pressure Relief Valve 1	Pressure Relief Valve 2	
Pressure Too High			No Hazard <i>p1-p1*p2</i>
p1	fails p2	opens 1-p3	No Hazard p1*p2-p1*p2*p3
		fails p3	Hazard p1*p2*p3

FMECA

- The Failure Mode, Effects and Criticality Analysis (FMECA) is a preventive method for the identification of problems, their risks and effects
- FMECA has the following goals
 - Detection of hazards and problems
 - Identification of potential risk
 - Quantification of risks
 - Determination of corrective measures
- FMECA can be performed as component FMECA (e.g. for a subsystem), as system FMECA (a complete system) or as process FMECA (e.g. for a development process)

FMECA

- FMECA is done in the following steps
 - Fault analysis: Collection of possible faults including available information about the type, causes and consequences
 - Risk evaluation with the aid of the risk priority number

RPZ = occurrence probability * severity of consequences * probability of non-detection

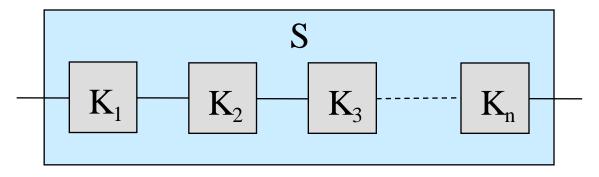
- If for the three influencing factors a value between 1 and 10 is used (1= no risk, minor occurrence; 10 = high risk, high occurrence), the RPZ is a value between 1 and 1000
- The risk priority number generates a ranking for the causes of faults
- Causes of faults with a high risk priority number are to be handled with priority

Reliability Block Diagrams

- Interconnection of all components of a system which are involved in performing the required function; represented as a flow chart
- RBDs distinguish only two states (intact/failed)
- Reliability function R(t)
 - F(t) gives the probability that at time t at least one failure has occurred; thus R(t) = 1 F(t) is the probability that at time t no failure has occurred yet

Reliability Block Diagrams Serial Connection

n serial connected components K_i. The system S fails if one of the components fails



$$R_{S}(t) = R_{K_{1}}(t) R_{K_{2}}(t) R_{K_{3}}(t) ... R_{K_{n}}(t) = \prod_{i=1}^{n} R_{K_{i}}(t)$$

• Example:

Two components with $R_1 = R_2 = 0.8$: $R_S = 0.64$

Reliability Block Diagrams Parallel Connection

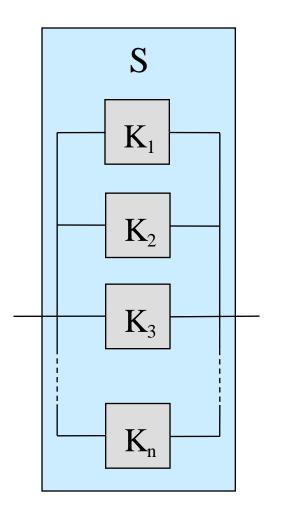
• n parallel connected components K_i. The system S fails if all components fail

$$F_{S}(t) = F_{K_{1}}(t) F_{K_{2}}(t) F_{K_{3}}(t) \dots F_{K_{n}}(t) = \prod_{i=1}^{n} F_{K_{i}}(t)$$

$$R_{S}(t) = 1 - F_{S}(t) = 1 - \prod_{i=1}^{n} F_{K_{i}}(t) = 1 - \prod_{i=1}^{n} (1 - R_{K_{i}}(t))$$

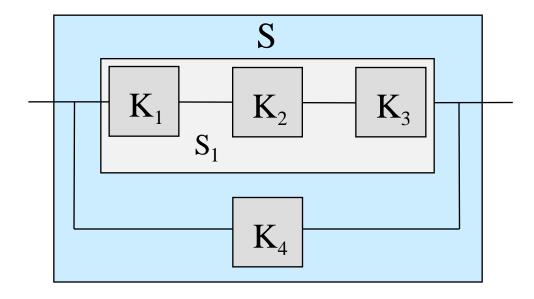
• Example:

Two components with $R_1 = R_2 = 0.8$: $R_S = 0.96$



Reliability Block Diagrams Combined Serial/Parallel Connection

• Combinations of serial and parallel connections can be solved hierarchically



Reliability Block Diagrams

• Example:

System S is a parallel connection of the subsystem S_1 with component K_4 . The reliability of the subsystem S_1 is:

$$Rs_1(t) = R\kappa_1(t) R\kappa_2(t) R\kappa_3(t)$$

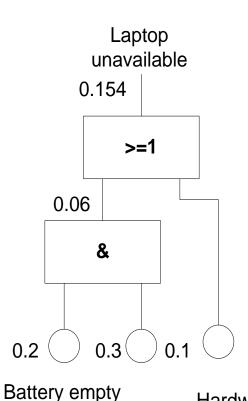
The reliability of the system S is:

$$R_{S}(t) = 1 - [(1 - R_{K_{4}}(t)) (1 - R_{S_{1}}(t))]$$

= 1 - [(1 - R_{K_{4}}(t)) (1 - R_{K_{1}}(t) R_{K_{2}}(t) R_{K_{3}}(t))]

All components have the reliability R = 0,8: $R_S = 0.9024$

Fault Tree Analysis



No socket around

Hardware defective

- Analysis method for the qualitative and quantitative evaluation of a specific failure of a system
- Deductive (backward searching)
- Graphical and intuitive technique
- Based on Boolean logic and combinatorics
- Widely accepted, captured in standards / handbooks
- Has been used and extended since 1961

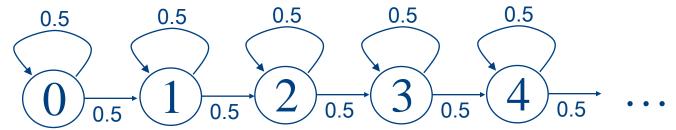
Markov Analysis

- Markov Analysis
 - Markov Chain
 - Markov Processes
- Petri Nets
 - Condition/Event Petri nets
 - State/Transition Petri nets
 - Predicate/Transistion Petri Nets / Coloured Petri Nets
 - Timed Petri Net Types
 - SPN
 - GSPN
 - DSPN

Markov Modeling

- Markov models are based on a description of the system behavior with state machines
- Common assumption of all Markov Models:
 The probability of the next state depends on the current state; it is independent from previous states, i.e. Markov models do not take into account the history
- Various Model types, e.g.:
 - · Discrete time models (Markov chain)
 - Continuous time models; also called Markov processes

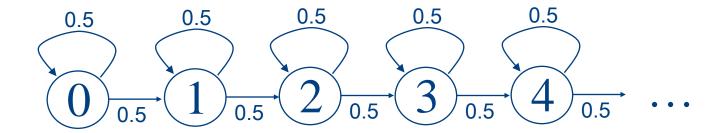
- Markov chains assume that state changes occur at discrete points in time
- Example: Throwing a coin *n* times and counting the results where we got the "front side" as the result of this experiment
- Obviously this can be modeled with the following Markov chain:



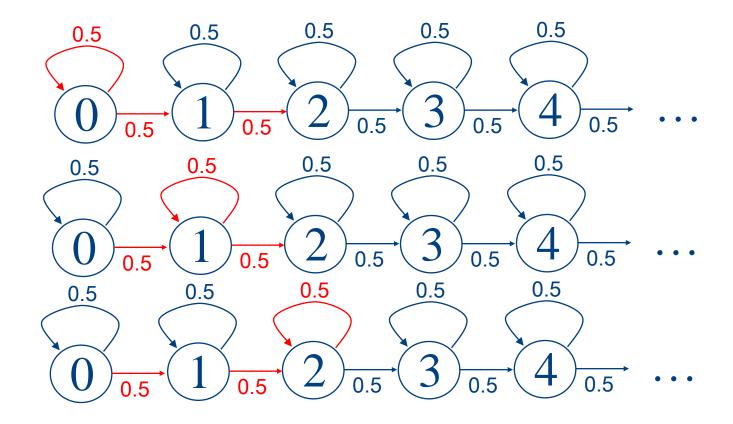
• If the current state is *i* then the probabilities to stay at state *i* or to enter state (*i*+1) are both 0.5. A state change may only occur at the discrete point in time, when the coin is thrown.

16

- What is the probably for 2 "front sides" after throwing the coin twice?
- Answer: There is one path of length 2, that leads into state 2, associated with probability (0.5 * 0.5) = 0.25

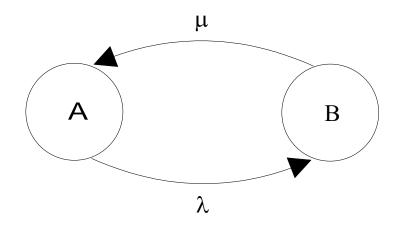


- What is the probably for 2 "front sides" after throwing the coin three times?
- Answer: There are the following paths of length 3, that lead into state 2



- Each of the three paths has probability (0.5 * 0.5 * 0.5) = 0.125
- The probability for 2 "front sides" after throwing the coin three times is 3 * 0.125 = 0.375

- Markov processes are continuous time models
- Example
 - A system with failure rate λ and repair rate μ is to be analyzed with the aid of a Markov model. The Markov model has the states A and B
 - A is the state where the system is intact. B is the state where the system failed
 - The system changes with the failure rate λ from the intact state into the failed state. With the repair rate μ it changes from the failed state into the intact operation



$$\frac{dP_A(t)}{dt} = - \lambda P_A(t) + \mu P_B(t)$$

$$\frac{dP_B(t)}{dt} = \lambda P_A(t) - \mu P_B(t) = - \frac{dP_A(t)}{dt}$$

$$P_A(t) + P_B(t) = 1$$

$$P_A(t) = \frac{\mu}{\mu + \lambda} + (c - \frac{\mu}{\mu + \lambda}) e^{-(\mu + \lambda)t}$$

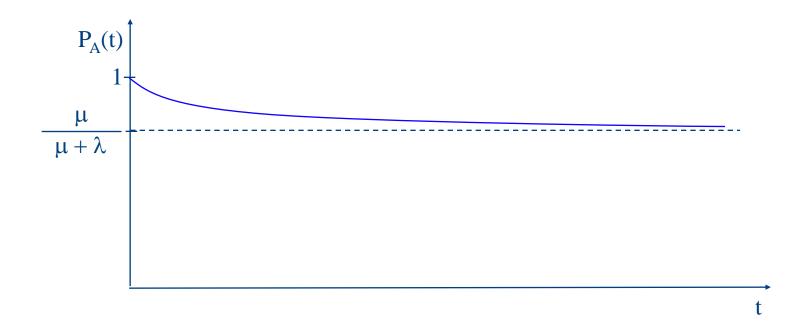
$$P_B(t) = 1 - P_A(t) = 1 - \left[\frac{\mu}{\mu + \lambda} + (c - \frac{\mu}{\mu + \lambda}) e^{-(\mu + \lambda)t}\right]$$

• For t towards infinite one gets the steady state of the system

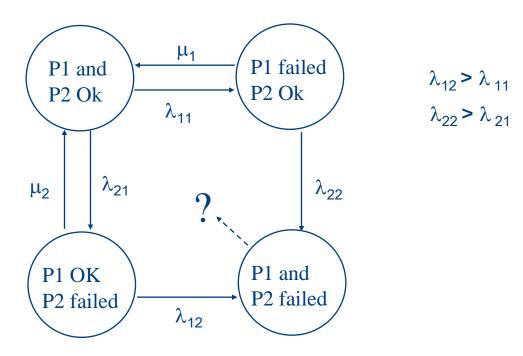
$$\lim_{t\to\infty} P_{A}(t) = \frac{\mu}{\mu + \lambda}$$

$$\lim_{t\to\infty} P_B(t) = 1 - \frac{\mu}{\mu + \lambda}$$

- If the repair rate is high compared to the failure rate the probability that the system is intact approaches 1
- If the repair rate is low compared to the failure rate the probability that the system is intact approaches zero



 Let's assume we have to model a system that uses two pumps to pump water to a higher level. In normal operating mode each pump runs at 50% of its maximum power. The remaining pumps takes over the complete load, if one pump fails and thus gets additional stress, which increases its failure probability. How could that be modeled?



24

- Alternative repair strategies when both pumps have failed:
 - · Repair P1 then switch on again,
 - · Repair P2 then switch on again,
 - Repair P1 and P2 and then switch on again.



Petri Nets

Petri Nets

- Condition/Event Petri nets
- State/Transition Petri nets
- Predicate/Transistion Petri Nets / Coloured Petri Nets
- Timed Petri Net Types
 - SPN
 - GSPN
 - DSPN

Petri Nets

- The concept of Petri nets has its origin in Carl Adam Petri's dissertation Kommunikation mit Automaten, submitted in 1962 to the faculty of Mathematics and Physics at the Technische Universität Darmstadt, Germany
- Various Petri net types, e.g.:
 - Condition/Event Petri nets
 - State/Transition Petri nets
 - Predicate/Transistion Petri Nets / Coloured Petri Nets
 - Timed Petri Net Types
 - Stochastic delay
 - No delay
 - Deterministic delay

Petri Nets

A Petri Net N contains at least *places* (P), *transitions* (T) and a *flow relation* (F) as well as an initial marking (M_0) : $N = (P, T, F, M_0)$:

- $P \cap T = \emptyset$
- $F \subseteq (P \times T) \cup (T \times P)$
- $M_0: P \rightarrow IN_0$

Petri Nets Condition / Event Petri Nets

- State elements hold either one or no token
 - · state elements represent conditions, which can be true or false
 - transition elements are represent local events
- Event is enabled if and only if
 - all its pre-conditions (connected by incoming arcs) are true
 - all its post-conditions (connected by outgoing arcs) are false
- An event occurrence negates its pre- and post-conditions
- Events with overlapping pre-conditions are in conflict
- Events with overlapping post-conditions are in contact

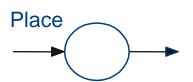
Petri Nets - Condition / Event Petri Nets Fundamentals

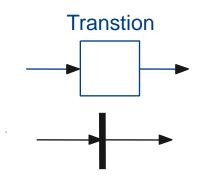
Petri nets

- Directed graph, which consists of two different kinds of nodes:
 - Places and Transitions

Places represent a clipboard of information

Transitions describe the processing of information



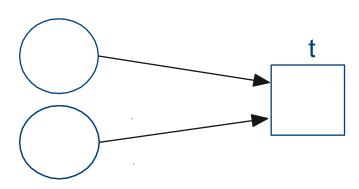


Petri Nets - Condition / Event Petri Nets Fundamentals

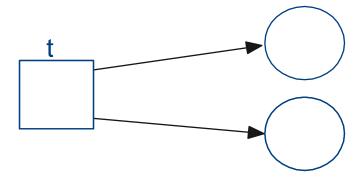
Semantic

- Arcs are only allowed between a node and the other kind of node.
- Places from which arcs run to a transition t are called Input Places of t
- Places to which arcs run from a transition t are called Output Places of t.

Input places of t



Output places of t



Petri Nets - Condition / Event Petri Nets

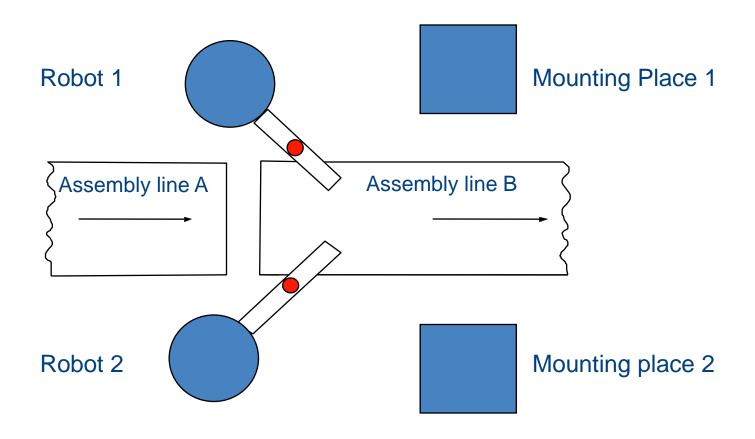
C/E Net

- Objects, respectively tokens, are of Boolean data type
- Transitions are interpreted as Events
- Places are denoted as Conditions
- Each place is allowed to receive exactly one or no token.
- Additional firing condition:
- C A transition t can fire if each input space of t contains one token and if each output space of t is empty. When it fires, the token in each input space will be consumed respectively. One token will be assigned to each output space.

Petri Nets - Condition / Event Petri Nets Example

Example

• 2 Robots assemble circuit boards with electronic devices, which are delivered on an assembly line A.



Petri Nets - Condition / Event Petri Nets Example

 C/E Net of the assembling robot Robot 1 is free Robot 1 grabs the Robot 1 lies the circuit board circuit board down Circuit board assembled by robot 1 Assembled circuit board is ready to be removed Unassembled Deliver unassembled Remove assembled circuit board circuit board circuit board arrives Robot 2 grabs the Robot 2 lies the circuit board circuit board down Circuit board assembled by robot 2 Legend: Robot 2 is free Initial marking

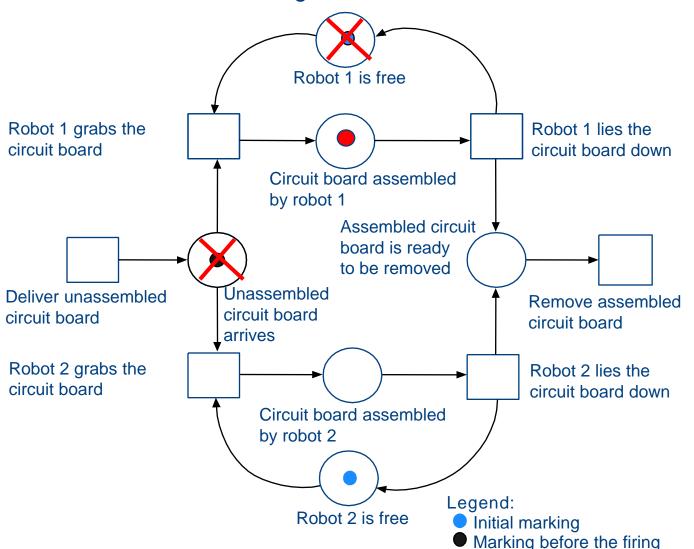
Before the firing

34

Marking before the firing

Petri Nets - Condition / Event Petri Nets Condition/Event Net: Example

C/E Net of the assembling robot



After the firing

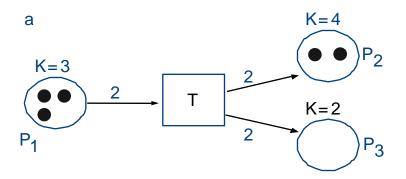
35

Petri Nets Place/Transition Nets

- **P/T Nets** (P/T Net, Place/Transition Net)
 - Places can obtain **more than one** token (in C/E nets only one token)
 - Transitions must release or add as many tokens when firing as the **weights** that are given on the arrows. (in C/E nets only one token)
 - If the capacity of a place is to be bigger than 1, this will be denoted as »K = ... « at the place.
 - The capacity defines the maximum number of tokens that may lie in one place.

Petri Nets Place/Transition Nets

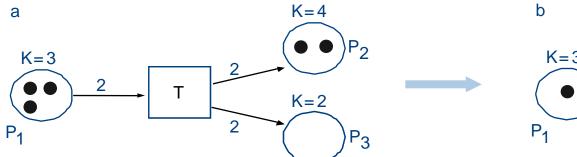
Firing with P/T Nets



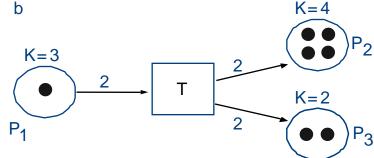
- Before the firing
 - P₁: 3 Tokens
 - \bigcirc P₂: 2 Tokens
 - in P₃: no Token.

Petri Nets Place/Transition Nets

Firing with P/T Nets



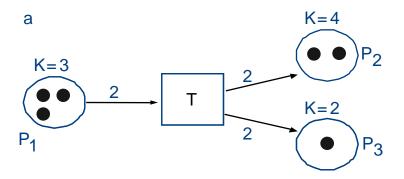
- Before the firing
 - \bigcirc P₁: 3 Tokens
 - O P₂: 2 Tokens
 - \bigcirc in P₃: no Token.



- After the firing
 - P₁: 1 Token
 - O P₂: 4 Tokens
 - \bigcirc in P₃: 2 Tokens.

Petri Nets Place/Transition Nets

Firing conditions in P/T Nets



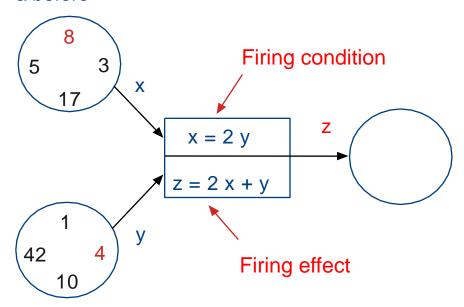
- ◆ T cannot fire because 3 Tokens would then lay in P₃
 - This is not allowed due to K = 2 of P_3 .

Petri Nets Predicate/Transition Nets

Pr/T Nets

- Apply individual, »colored« tokens
- C/E and P/T Nets apply only »black« tokens, which are all the same

a before

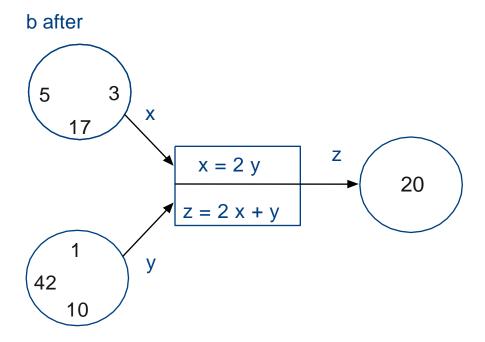


Petri Nets Predicate/Transition Nets

Pr/T Nets

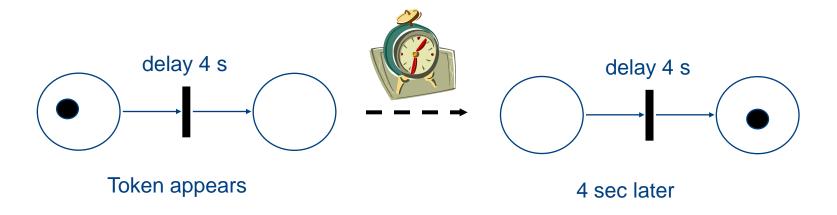
- Use individual, »colored« tokens
- C/E and P/T Nets use only »black« tokens, which are all the same

a before 8 5 x = 2y y = 2x + yFiring effect Firing condition Firing condition



Petri Nets Timed Petri Net Types: Simple approach

- To study performance and dependability issues of systems it is necessary to include a timing concept into the model.
- There are several possibilities to do this for a Petri net; however, the most common way is to associate a *firing delay* with each transition. This delay specifies the time that the transition has to be *enabled*, before it can actually fire:



Petri Nets Timed Petri Net Types

SPN (Stochastic Petri Net)

• If the delay is a random distribution function (exponential distribution), the resulting net class is called *stochastic Petri net*.

GSPN (Generalised stochastic Petri Net)

SPN plus immediate transitions (no delay) and inhibit edges.

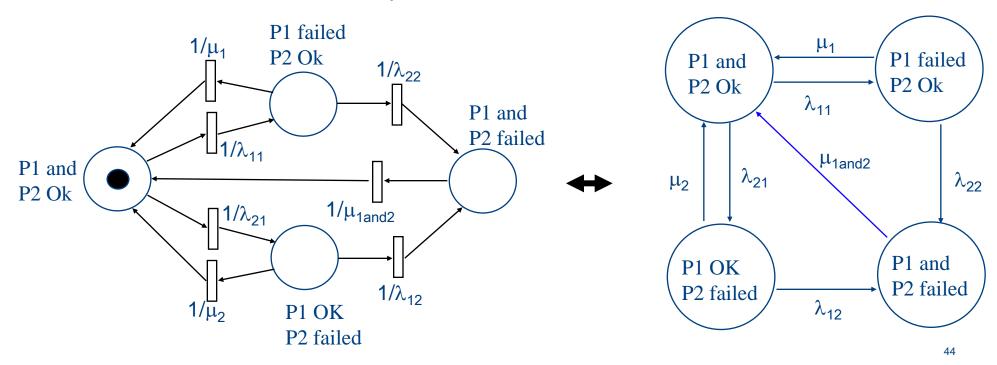
DSPN

• GSPN plus deterministic transitions (delay is fixed).

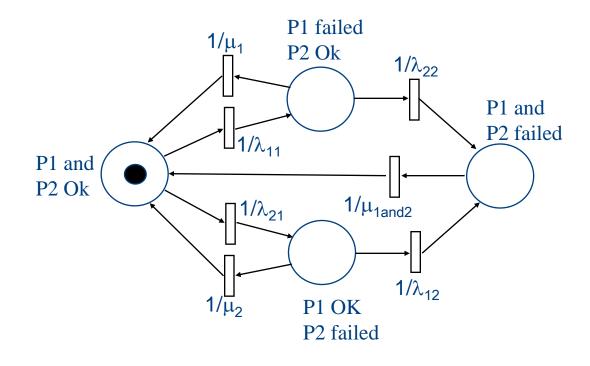
Petri Nets Timed Petri Net Types (SPN)

SPN (Stochastic Petri Net)

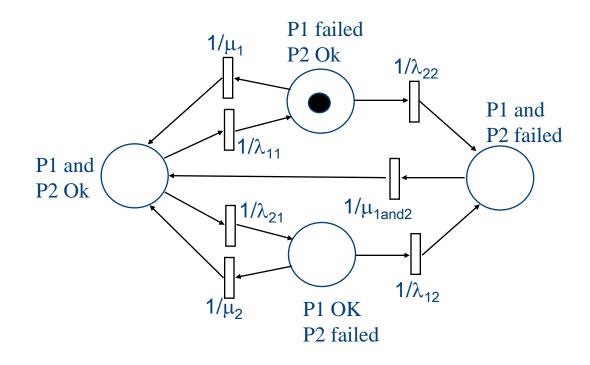
- Delay is exponentially distributed
- Can be transformed into an equivalent Markov Process



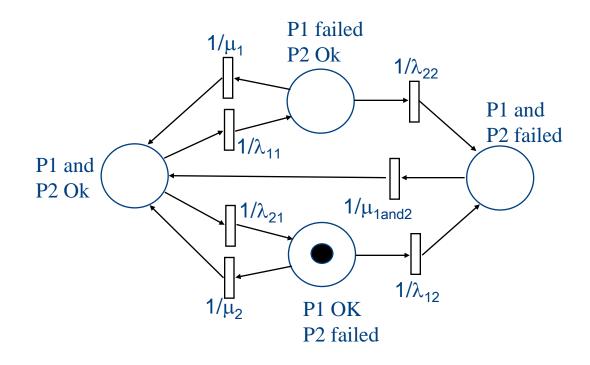
Possible markings: Initial



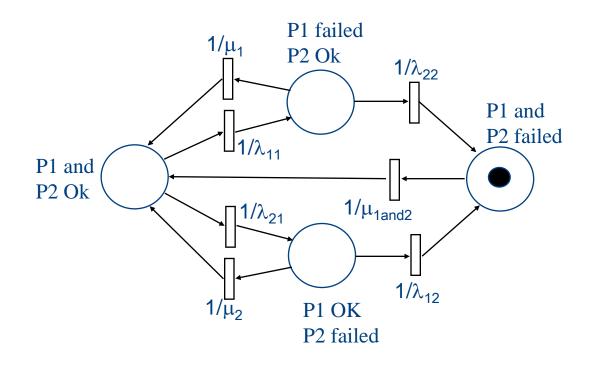
Possible markings: P1 failed



Possible markings: P2 failed



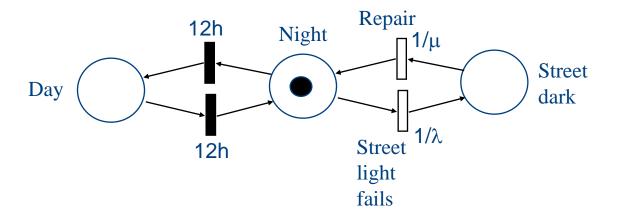
Possible markings: Both failed



Petri Nets Timed Petri Net Types (DSPN)

DSPN (Stochastic Petri Net)

• Exponentially distributied delay + *immediate transitions* (no delay) + *deterministic transitions* (delay is fixed) and inhibit arcs



49

Model-Based Safety and Reliability Analysis Methods Literature

- Liggesmeyer 2000, Qualitätssicherung softwareintensiver technischer Systeme, Heidelberg: Spektrum-Verlag 2000
- DIN 25424; DIN 25424-1, Fehlerbaumanalyse Methoden und Bildzeichen, September 1981; DIN 25424-2: Fehlerbaumanalyse Handrechenverfahren zur Auswertung eines Fehlerbaumes, April 1990; Berlin: Beuth Verlag
- DIN 25448, Ausfalleffektanalyse (Fehler-Möglichkeits- und -Einfluß-Analyse), Berlin: Beuth Verlag, Mai 1990
- IEC 812, Analysis Techniques for System Reliability Procedure for Failure Mode and Effect Analysis (FMEA), International Electrotechnical Commission 1985
- IEC 61025, Fault tree analysis (FTA), International Electrotechnical Commission 1990
- IEC 61078, Analysis techniques for dependability Reliability block diagram method, International Electrotechnical Commission 1991
- IEC 61165, Application of Markov techniques, International Electrotechnical Commission 1995

0101seda010100