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What are Events?

• In probability theory, everything that is true with a certain probability is called 

“event”

• In software / systems engineering (and in common language), an event is 

something occurring at a given point in time

• In FTA, events can be
• Sudden events ("Bolt breaks")

• States or conditions ("Valve is blocked")

• (Informal) propositions ("Fire is not detected by supervisor")

• Note the differences regarding probabilities
• States / propositions have a probability (at a given time)

• Events have a probability density or rate

• (Out-dated) DIN 25424 features appropriate formulas for probability and probability 

density

 All of them may be useful, but

specify clearly what you mean
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Examples for Problematic Event Semantics

Priority AND: Output event occurs when all input events occur in a specific order

• If FT events are sudden events: When does output event occur?
• E.g. simultaneously to the last of the input events

• If output event is a logical proposition: The proposition is true (all the time!), if the 

input events do occur in the right order
• But can input events also be propositions then? How can then Input 1 occur before Input 2?

• If FT events are states / conditions / predicates that can be true or false at given 

times
• Input 1 can become true before Input 2

• Output condition is true upon the time when the last input condition is true



Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

5

Inhibit, Enabler / Conditioning Events

Inhibit: Output event occurs when input event occurs and inhibit event is not true

• Inhibit event has state / condition semantics

• Sometimes enabler events (states) are distinguished from initiator events (trigger 

semantics)

• Separate symbols are available

Basic Event / 

Initiator

Conditioning Event / 

Enabler
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The Use of NOT

• A FT without NOT is called "coherent"
• "A system can never get better if more components fail"

• Some NOTs are virtual (e.g. in transcriptions of voter, XOR, ...)

• If FT events are sudden events
• How can their occurrence be negated?

• In this case, NOT makes no sense

• If FT events are states / conditions / predicates / logical propositions
• Negation makes sense

• BDD algorithm can handle negated variables

• Minimal cut sets → Prime implicants (may contain negated events)

cf. John Andrews: “To Not or not to Not”

MCS based probability

calculation is not suitable

for negated events!
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Generalization vs. Causation Gates

• Sometimes gates suggest causality

• Electrical short circuit OR defective gas tube  fire

• Sometimes gates suggest generalization / decomposition
• Engine defective OR tire defective = car defective

• In original FT standards no distinction, some researchers do distinction
• Sometimes, two pairs of AND / OR are proposed [Gorski]

• Some say that AND means causation and OR means decomposition [FT Handbook]

• Whether or not FTs express causality at all can be discussed...
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Issues about Decomposition
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• FTs are hierarchical by nature

• Traditionally, FTs are decomposed by modules (independent sub-trees)

• Each module is replaced by a single event with the same probability

• Each module can be analyzed independently

• Alternatively, partitioning into pages by transfer symbols
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FT Decomposition by Modules

Modules are independent

sub-trees

But:

Technical components often 

influence each other

e1
&

&

&
e2

e3 e4

System

Sub-Component1

FT Module

Technical components 

are not always modules!
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Deficiencies of Classical Module Concept

• Module borders may be orthogonal to component borders

• Attachment of (partial) fault trees to components is not possible if components 

have external influences

• Division of labor (e.g. supplier/integrator) is not possible

• Modeling of some component by other models than fault trees is not possible

• Partitioning of fault trees into pages (using transfer ports) is a solution to some 

degree, but still no division of labor or reuse
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Recent Approach: Component Fault Trees

Here, “component" means technical unit. 

Components are connected by ports like in architectural models.

New paradigm: Components represent Boolean formulas
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Temporal Functions

• Events can be understood as propositions that are true or false at each given point 

of time

• Supplying time functions instead of constant probabilities allows to plot 

reliability/availability function for the complete system
• Events can be exponentially distributed, Weibull distributed etc.

• Useful in combination with Markov analysis

• Mission time for each event or sub-component specifies time

• Important special case: Exponential distribution
• P(t) = 1- e-t, : Failure rate; P: Probability, that component has failed

• OR leads to an exponential function as gate output, but AND does not!

Attention when representing events by their occurrence rate:

Output function is not always exponential!
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Temporal Relations between Events

• Standard FTA is based on Boolean logic and cannot handle temporal sequences

• Priority AND expresses probability that event 1 occurs before event 2

 Only useful if time functions (and not static probabilities) are used

 Probability of system failure before t is probability that E1 occurs before some intermediate point 

of time and E2 occurs after that point, accumulated for all points of time between 0 and t
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Dependencies

• Stochastic independence is an important assumption for combinatorial approaches

• Repeated events as special case of dependency can be handled by restructuring 

the Boolean formula

• For special cases (e.g. spares), there are solutions

• When probabilities are small, errors may be negligible if dependencies are not 

taken into account

• Correct calculation in presence of arbitrary dependency is only possible by state-

based models

• Functional dependency gate in DFT allows to express secondary faults
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Elimination of Repeated Events
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 By restructuring the Boolean formula, repeated events can be avoided
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Repeated Events: Tree vs. DAG
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Repeated event Unique event

Not repeated, but 

same name 

 Directed Acyclic Graphs (instead of trees) eliminate repeated events

 A namespace concept is desirable (implemented in Component Fault Trees)
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Spares and Spare Pools

• A special case of dependency is the usage of spares

• System fails if primary unit fails and spare also fails or has already failed before

• While the primary unit is operating, spares fail
• not at all → cold spare

• at a reduced rate (specified by a factor) → warm spare

• at the normal rate (hot spare)

• Special spare gates have been proposed

• Spare pool: Not only one spare unit, but n spare units with identical failure rate
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Explicit Dependencies
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Other ways to deal with dependencies

• Functional Dependency Gate (in some packages)
• Output event occurs necessarily if input occurs

• Output event can also occur spontaneously

 Many attempts have been made to bring special cases of dependency

into FTA. At a certain point, state-based models (e.g. Markov chains)

are a better fit (but analysis is usually much slower!)
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Integration with other models

• Fault trees can and should be integrated with
• Markov chains: to describe basic events in presence of dependencies

• Event trees: to describe consequences of the top-event

• Fault trees can and should be used in conjunction with
• FMEA

• other hazard analysis models (Preliminary Hazard Analysis, Common Cause Analysis, ...)

• general systems and software modeling techniques 

 Formal integration with software / systems modeling is desirable, but

not yet achieved to a satisfactory degree
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FTA for Software

• FTA stems from an era when (at least) safety critical systems were purely 

electrical / mechanical

• They have "working/failed" semantics

• They cannot natively capture the dynamic nature of software

• There have been several attempts to apply FTA to software or to derive FTs from 

software
• partly based on source code statements

• partly based on statecharts or formal methods

 Applying FTA to software controlled systems is still an issue
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Is there a formal semantics for FTA?

• FTs are intuitive, but unclear semantics is an issue when
• constructing FTs automatically

• integrating FTs with other kinds of models

• using dynamic extensions

• Some recent research work about formalizing FTA
• formalizing the meaning of gates

• proving that FT is complete and consistent

• Different formalisms used
• Z (algebraic specification)

• Interval Temporal Logic, Duration Calculus (temporal/real time logic)

• Translation into Markov chains and different kinds of probabilistic Petri nets

Formalization is not agreed upon.

Different researchers use different approaches
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