
Symbolic Model Checking

Safety and Reliability of Embedded Systems

(Sicherheit und Zuverlässigkeit eingebetteter Systeme)

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

2

• Introduction

• Example: Elevating rotary table

• Excursus: Temporal logic (CTL)

• State space

• Proof of safety requirements

• Excursus: OBDDs

• Encoding of state machines with OBDDs

• Analysis of state machines with OBDDs

• Summary

Content

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

3

• Symbolic model checking is a formal verification technique
• It is mathematically founded

• Formal documents are required as a starting point

• It yields complete statements

• The results are reliable

• Aims
• Verification of defined properties of the item under consideration (software, specification) or ...

• Generation of information, where the required property does not hold

Symbolic Model Checking

Introduction

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

4

• In the following, symbolic model checking will be explained by the verification of

properties
• ... of finite state behavioral descriptions

• ... against formulas in temporal logic

• Finite state descriptions are interesting because they are common in software

engineering and other disciplines (e.g. electrical engineering). Programming

languages used in control engineering are normally based on state machines

• Temporal logic is necessary because information about the sequence is required

when traversing a state machine

Symbolic Model Checking

Introduction

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

5

Control software Controlled unit

y1

y2
y3

x1

x2

x3

x1
x2 y1

y2

y3

xj

yi

Actuator

Sensor

Embedded system

Safety requirement in temporal logic

• Finite state control software

• Formal description of the unit under control

• Formal specification of the (safety) requirements in temporal logic (e.g. CTL) for

the embedded system which consists of the control software and the unit under

control

Symbolic Model Checking

Introduction

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

6

A manufacturing cell processes raw metal parts, which are fed to a press by a robot. The

robot takes the raw part from an elevating rotary table, to which it was delivered by a

conveyor belt. The task of the elevating rotary table is to place the raw part, by changing

its horizontal and vertical position, in such a way, that it can be grabbed by the robot.

The table has two drives (actuators) – one for the horizontal and one for the vertical

direction – and 3 sensors – respectively one for the horizontal and one for the vertical

position as well as one for the detection of a part on the table.

Symbolic Model Checking

Example: Elevating rotary table - Hardware

Actuator Name Values

Horizontal movement hmov stop, plus, minus

Vertical movement vmov stop, up, down

Sensor Name Values

Horizontal position hpos x0, x1, x2

Vertical position vpos y0, y1, y2

Part on the table part_on_table no, yes

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

7

The starting position of the table is hpos=x0, vpos=y0. All motions have stopped
(hmov=stop, vmov=stop). The vertical motion is started (vmov=up) when a part is put on
the table (part_on_table=yes). If vpos=y1 is reached, the horizontal motion is started as
well (hmov=plus). The robot can grab the part when the table has reached the final
position (hpos=x2, vpos=y2). The horizontal motion (hmov=minus) starts when the part
has left the table (part_on_table=no) and continues until the position hpos=x0 is
reached. The downward motion starts (vmov=down) and the horizontal motion is stopped
(hmov=stop). The downward motion is also stopped (vmov=stop) when the table reaches
the starting position.

Conveyor belt

Elevating rotary table

Robot

hpos

vpos

x0 x1 x2
y0

y1

y2

Starting position

Final position

Symbolic Model Checking

Example: Elevating rotary table - Control Strategy: Software

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

8

A safety requirement has to be considered. The table is not allowed to move into the
forbidden area. This is ensured, if the states where [vpos=y0 /\ (hpos=x1 \/ hpos=x2)] is
true are not reachable. For this reason, during the upward movement the horizontal
motion is started at the vertical position y1, and not before. This applies analogously for
the downward motion.

Conveyor belt

Elevating rotary table

Robot

hpos

vpos

x0 x1 x2
y0

y1

y2

Starting position

Final position

Forbidden:
Safety-
requirement

Not allowed!

Symbolic Model Checking

Example: Elevating rotary table - Property to prove

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

9

CTL (Computation Tree Logic)

• Forward-time operators
• G: globally, invariantly

• F: sometime in the future

• X: next time

• U: Until

• Path quantifiers
• A: all computation paths

• E: some computation path (exists)

• In CTL, a path quantifier has to be placed right before a forward-time operator (e.g.

AG f or EF f)

Symbolic Model Checking

Excursus: Temporal logic - Here CTL

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

10

State in which f is fulfilled

At least one state on every path fulfills f

AF fAG f

All states on all paths fulfill f

EG f

There exists at least one path on which

all states fulfill f

EF f

There exists at least one path on which

at least one state fulfills f

Symbolic Model Checking

Excursus: Temporal logic - Here CTL

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

11

State in which f is fulfilled

EX f

State in which

EX f is true

State in which

EX f is true

There has to be a directly following

state in which f is fulfilled

AX f

State in which

AX f is true

f has to be fulfilled in every directly

following state

Symbolic Model Checking

Excursus: Temporal logic - Here CTL

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

12

State in which f is fulfilled

State in which g is fulfilled

f is true along all paths until g occurs

E [f U g]

State in which

E [f U g] is true

F is true on a path until g is fulfilled

A [f U g]

Symbolic Model Checking

Excursus: Temporal logic - Here CTL

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

13

• Safety requirement

• It is not allowed that a state occurs where the following is true

[vpos=y0 /\ (hpos=x1 \/ hpos=x2)]

• In CTL

AG ~[vpos=y0 /\ (hpos=x1 \/ hpos=x2)]

or equivalently

~EF [vpos=y0 /\ (hpos=x1 \/ hpos=x2)]

~: Negation

Symbolic Model Checking

Example: Elevating rotary table - Safety requirement

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

14

• Control software written in the programming language CSL (Control Specification

Language), which is based on state machines

StateVariables

input vpos : [y0, y1, y2] default y0;

input hpos : [x0, x1, x2] default x0;

input part_on_table : [no, yes] default no;

output vmov: [stop, up, down] default stop;

output hmov: [stop, plus, minus] default stop;

Transitions

start_up:= (part_on_table = yes /\ vpos = y0) ==> (** vmov = up);

rotate:= (part_on_table = yes /\ vpos = y1 /\ hpos < x2) ==> (** hmov = plus);

stophigh:= (part_on_table = yes /\ vpos = y2) ==> (** vmov = stop);

stop_rot:= (part_on_table = yes /\ hpos = x2) ==> (** hmov = stop);

rot_back:= (part_on_table = no /\ vpos = y2 /\ hpos = x2) ==> (** hmov = minus);

start_down:= (part_on_table = no /\ hpos = x0 /\ vpos = y2)

==> (** hmov = stop /\ ** vmov = down);

stoplow:= (part_on_table = no /\ vpos = y0) ==> (** vmov = stop);

Symbolic Model Checking

Example: Elevating rotary table - Control software

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

15

y0,x0,0stopstop stopplus stopminus upstop upplus upminus downstop downplus downminus y0,x0,1y0,x1,0y0,x1,1y0,x2,0y0,x2,1y1,x0,0y1,x0,1y1,x1,0y1,x1,1y1,x2,0y1,x2,1y2,x0,0y2,x0,1y2,x1,0y2,x1,1y2,x2,0y2,x2,1

vmovhmov vposhpospart_on_table

y0,x0,0stopstop stopplus stopminus upstop upplus upminus downstop downplus downminus y0,x0,1y0,x1,0y0,x1,1y0,x2,0y0,x2,1y1,x0,0y1,x0,1y1,x1,0y1,x1,1y1,x2,0y1,x2,1y2,x0,0y2,x0,1y2,x1,0y2,x1,1y2,x2,0y2,x2,1

vmovhmov vposhpospart_on_table

• The state space of the controller results from the combination of actuator values.

Sensor readings trigger state transitions in the state space

• The transitions start_up and rotate are depicted in the state space below

stop
stop

stop
plus

stop
minus

up
stop

up
plus

up
minus

down
stop

down
plus

down
minus

vmov
hmov

start_up := (part_on_table = yes /\ vpos = y0) ==> (** vmov = up);

rotate:= (part_on_table = yes /\ vpos = y1 /\ hpos < x2) ==> (** hmov = plus);

stophigh := (part_on_table = yes /\ vpos = y2) ==> (** vmov = stop);

stop45 := (part_on_table = yes /\ hpos = x2) ==> (** hmov = stop);

rot_back := (part_on_table = no /\ vpos = y2 /\ hpos = x2) ==> (** hmov = minus);

start_down := (part_on_table = no /\ hpos = x0 /\ vpos = y2) ==> (** hmov = stop /\ ** vmov = down);

stoplow := (part_on_table = no /\ vpos = y0) ==> (** vmov = stop);

start_up

rotate

Symbolic Model Checking

Example: Elevating rotary table - State space

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

16

Symbolic Model Checking

Example: Elevating rotary table

• The relevant properties are not defined exclusively for the control automaton and
are therefore not verifiable

• It is necessary to take the properties of the controlled system into consideration,
i.e. the response of the controlled system to commands from the control software

• These result from in most cases relatively simple physical properties of the
controlled system, e.g.

• If a drive is stopped the controlled system does not move in this axis

• With opened inflow and closed outflow valve the level of a closed boiler does not decrease

• The combination of control logic and the response of the controlled system
determines the behavior of the whole system

=> A formal description of the behavior of the controlled system is necessary

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

17

allMotorsStop:= ('table.hmov' = stop /\ 'table.vmov' = stop). Definitions

initialPosition:= ('table.hpos'=x0) /\ ('table.vpos'=y0).

finalPosition:= ('table.hpos'=x2) /\ ('table.vpos'=y2).

initialState:= initialPosition /\ ('table.part_on_table'=no).

finalState:= finalPosition /\ ('table.part_on_table'=yes).

fairprocess:=

(

(In dependency of the moving direction the vertical positions have to occur in a certain order

('table.vmov' = stop /\ 'table.vpos' = y0) /\ x('table.vpos' = y0)

\/ ('table.vmov' = stop /\ 'table.vpos' = y1) /\ x('table.vpos' = y1)

\/ ('table.vmov' = stop /\ 'table.vpos' = y2) /\ x('table.vpos' = y2)

\/ ('table.vmov' = up /\ 'table.vpos' = y0) /\ until('table.vpos' = y0, 'table.vpos' = y1)

\/ ('table.vmov' = up /\ 'table.vpos' = y1) /\ until('table.vpos' = y1, 'table.vpos' = y2)

\/ ('table.vmov' = up /\ 'table.vpos' = y2) /\ x('table.vpos' = y2)

\/ ('table.vmov' = down /\ 'table.vpos' = y0) /\ x('table.vpos' = y0)

\/ ('table.vmov' = down /\ 'table.vpos' = y1) /\ until('table.vpos' = y1, 'table.vpos' = y0)

\/ ('table.vmov' = down /\ 'table.vpos' = y2) /\ until('table.vpos' = y2, 'table.vpos' = y1)

)

...

Symbolic Model Checking

Example: Elevating rotary table

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

18

/\ (In dependency of the moving direction the horizontal positions have to occur in a certain order

('table.hmov' = stop /\ 'table.hpos' = x0) /\ x('table.hpos' = x0)

\/ ('table.hmov' = stop /\ 'table.hpos' = x1) /\ x('table.hpos' = x1)

\/ ('table.hmov' = stop /\ 'table.hpos' = x2) /\ x('table.hpos' = x2)

\/ ('table.hmov' = plus /\ 'table.hpos' = x0) /\ until('table.hpos' = x0, 'table.hpos' = x1)

\/ ('table.hmov' = plus /\ 'table.hpos' = x1) /\ until('table.hpos' = x1, 'table.hpos' = x2)

\/ ('table.hmov' = plus /\ 'table.hpos' = x2) /\ x('table.hpos' = x2)

\/ ('table.hmov' = minus /\ 'table.hpos' = x0) /\ x('table.hpos' = x0)

\/ ('table.hmov' = minus /\ 'table.hpos' = x1) /\ until('table.hpos' = x1, 'table.hpos' = x0)

\/ ('table.hmov' = minus /\ 'table.hpos' = x2) /\ until('table.hpos' = x2, 'table.hpos' = x1)

)

/\ (

(initialState /\ allMotorsStop /\ x('table.part_on_table' = yes)) Parts appear in the initial state

\/ (finalState /\ allMotorsStop /\ x('table.part_on_table' = no)) Parts disappear in the final state

\/ (There is no change at the availability of the parts in every other state

~(initialState /\ allMotorsStop \/ finalState /\ allMotorsStop)

/\ ('table.part_on_table' = no /\ x('table.part_on_table' = no) \/ 'table.part_on_table' = yes /\

x('table.part_on_table' = yes))

)

)

)

Symbolic Model Checking

Example: Elevating rotary table

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

19

y0,x0,0stopstop stopplus stopminus upstop upplus upminus downstop downplus downminus y0,x0,1y0,x1,0y0,x1,1y0,x2,0y0,x2,1y1,x0,0y1,x0,1y1,x1,0y1,x1,1y1,x2,0y1,x2,1y2,x0,0y2,x0,1y2,x1,0y2,x1,1y2,x2,0y2,x2,1

vmovhmov vposhpospart_on_table

y0,x0,0stopstop stopplus stopminus upstop upplus upminus downstop downplus downminus y0,x0,1y0,x1,0y0,x1,1y0,x2,0y0,x2,1y1,x0,0y1,x0,1y1,x1,0y1,x1,1y1,x2,0y1,x2,1y2,x0,0y2,x0,1y2,x1,0y2,x1,1y2,x2,0y2,x2,1

vmovhmov vposhpospart_on_table

• The state space of the elevating rotary table is
defined as the combination of the sensor values.
Actuator data is triggering transitions in this state
space

• The diagram shows those transitions that
represent the correlation between vertical
movement and vertical position

Symbolic Model Checking

Example: Elevating rotary table – State space

y0,x0,0

y0,x0,1

y0,x1,0

y0,x1,1

y0,x2,0

y0,x2,1

y1,x0,0

y1,x0,1

y1,x1,0

y1,x1,1

y1,x2,0

y1,x2,1

y2,x0,0

y2,x0,1

y2,x1,0

y2,x1,1

y2,x2,0

y2,x2,1

vpos

hpos

part_on_table

vmov = up

vmov = down

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

20

• Next Step: Combination of the state machine of the controller and the state

machine of the elevating rotary table to a so-called product fsm (finite state

machine)

Control Software Set

y1

y2
y3

x1

x2

x3

x1
x2 y1

y2

y3

xj

yi

actuator

sensor

embedded system

safety requirement in

temporal logic

y0,x0,0

y0,x0,1

y0,x1,0

y0,x1,1

y0,x2,0

y0,x2,1

y1,x0,0

y1,x0,1

y1,x1,0

y1,x1,1

y1,x2,0

y1,x2,1

y2,x0,0

y2,x0,1

y2,x1,0

y2,x1,1

y2,x2,0

y2,x2,1

vpos

hpos

part_on_table

vmov = up

vmov = down

stop
stop

stop
plus

stop
minus

up
stop

up
plus

up
minus

down
stop

down
plus

down
minus

vmov
hmov

start_up := (part_on_table = yes /\ vpos = y0) ==> (** vmov = up);

rotate:= (part_on_table = yes /\ vpos = y1 /\ hpos < x2) ==> (** hmov = plus);

stophigh := (part_on_table = yes /\ vpos = y2) ==> (** vmov = stop);

stop45 := (part_on_table = yes /\ hpos = x2) ==> (** hmov = stop);

rot_back := (part_on_table = no /\ vpos = y2 /\ hpos = x2) ==> (** hmov = minus);

start_down := (part_on_table = no /\ hpos = x0 /\ vpos = y2) ==> (** hmov = stop /\ ** vmov = down);

stoplow := (part_on_table = no /\ vpos = y0) ==> (** vmov = stop);

start_up

rotate

Symbolic Model Checking

Example: Elevating rotary table

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

21

y0,x0,0stopstop stopplus stopminus upstop upplus upminus downstop downplus downminus y0,x0,1y0,x1,0y0,x1,1y0,x2,0y0,x2,1y1,x0,0y1,x0,1y1,x1,0y1,x1,1y1,x2,0y1,x2,1y2,x0,0y2,x0,1y2,x1,0y2,x1,1y2,x2,0y2,x2,1

vmovhmov vposhpospart_on_table

y0,x0,0stopstop stopplus stopminus upstop upplus upminus downstop downplus downminus y0,x0,1y0,x1,0y0,x1,1y0,x2,0y0,x2,1y1,x0,0y1,x0,1y1,x1,0y1,x1,1y1,x2,0y1,x2,1y2,x0,0y2,x0,1y2,x1,0y2,x1,1y2,x2,0y2,x2,1

vmovhmov vposhpospart_on_table

• The number of states of the
product automaton is the product
of the number of states of the
control automaton and of the
automaton of the controlled
system

• Here, those transitions are
displayed that can actually be
passed through in the product
automaton. Steps of the controller
are drawn as solid lines and steps
of the controlled system are
represented as dashed lines

y0,x0,0

stop
stop

stop
plus

stop
minus

up
stop

up
plus

up
minus

down
stop

down
plus

down
minus

y0,x0,1

y0,x1,0

y0,x1,1

y0,x2,0

y0,x2,1

y1,x0,0

y1,x0,1

y1,x1,0

y1,x1,1

y1,x2,0

y1,x2,1

y2,x0,0

y2,x0,1

y2,x1,0

y2,x1,1

y2,x2,0

y2,x2,1

vmov
hmov

vpos

hpos

part_on_table

start_up

rotate

stop45

rotate_back

start_down

stoplow

stop45

stophigh

stophigh

stophighstophigh

stop45

Symbolic Model Checking

Example: State space

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

22

y0,x0,0stopstop stopplus stopminus upstop upplus upminus downstop downplus downminus y0,x0,1y0,x1,0y0,x1,1y0,x2,0y0,x2,1y1,x0,0y1,x0,1y1,x1,0y1,x1,1y1,x2,0y1,x2,1y2,x0,0y2,x0,1y2,x1,0y2,x1,1y2,x2,0y2,x2,1

vmovhmov vposhpospart_on_table

y0,x0,0stopstop stopplus stopminus upstop upplus upminus downstop downplus downminus y0,x0,1y0,x1,0y0,x1,1y0,x2,0y0,x2,1y1,x0,0y1,x0,1y1,x1,0y1,x1,1y1,x2,0y1,x2,1y2,x0,0y2,x0,1y2,x1,0y2,x1,1y2,x2,0y2,x2,1

vmovhmov vposhpospart_on_table

• Safety requirement:

AG ~[vpos=y0 /\ (hpos=x1 \/
hpos=x2)]

resp.:

~EF [vpos=y0 /\ (hpos=x1 \/
hpos=x2)]

• States for which [vpos=y0 /\
(hpos=x1 \/ hpos=x2)] holds are
marked in grey. The safety
requirement demands that none
of the possible paths contains
such a state

=> Reachability analysis

y0,x0,0

stop
stop

stop
plus

stop
minus

up
stop

up
plus

up
minus

down
stop

down
plus

down
minus

y0,x0,1

y0,x1,0

y0,x1,1

y0,x2,0

y0,x2,1

y1,x0,0

y1,x0,1

y1,x1,0

y1,x1,1

y1,x2,0

y1,x2,1

y2,x0,0

y2,x0,1

y2,x1,0

y2,x1,1

y2,x2,0

y2,x2,1

vmov
hmov

vpos

hpos

part_on_table

start_up

rotate

stop45

rotate_back

start_down

stoplow

stop45

stophigh

stophigh

stophighstophigh

stop45

Symbolic Model Checking

Example: State space

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

23

Symbolic Model Checking

Proof of safety requirements

• Safety requirements can often be checked by performing reachability analyses of

the state space: “A system is safe, if unsafe states are not reachable.”

• Algorithm:

Calculate F as the set of direct successor states of set E.

Initialize the set of reachable states E with the initial state Z

E = E  F

until E stays unchanged (so-called fix point iteration)

Calculate the intersection S of E and the set of the unsafe states

U; S = E  U

S = T F

system is

safe

system is unsafe

Determine a path from the initial state into an

unsafe state as an example for unsafe behavior

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

24

• Algorithm for safety analysis:

y0,x0,0

stop
stop

stop
plus

stop
minus

up
stop

up
plus

up
minus

down
stop

down
plus

down
minus

y0,x0,1

y0,x1,0

y0,x1,1

y0,x2,0

y0,x2,1

y1,x0,0

y1,x0,1

y1,x1,0

y1,x1,1

y1,x2,0

y1,x2,1

y2,x0,0

y2,x0,1

y2,x1,0

y2,x1,1

y2,x2,0

y2,x2,1

vmov
hmov

vpos

hpos

part_on_table

start_up

rotate

stop45

rotate_back

start_down

stoplow

stop45

stophigh

stophigh

stophighstophigh

stop45

F= {(y0,x0,1,stop,stop)}

E= {(y0,x0,0,stop,stop)}

F= {(y0,x0,1,up,stop)}F= {(y1,x0,1,up,stop)}F= {(...)}

E= {(y0,x0,0,stop,stop); (y0,x0,1,stop,stop)}E= {(y0,x0,0,stop,stop); (y0,x0,1,stop,stop);

(y0,x0,1,up,stop)}

E= {(y0,x0,0,stop,stop); (y0,x0,1,stop,stop);

(y0,x0,1,up,stop); (y1,x0,1,up,stop)}

E= {(y0,x0,0,stop,stop); (y0,x0,1,stop,stop);

(y0,x0,1,up,stop); (y1,x0,1,up,stop); ...}

E= {(y0,x0,0,stop,stop); (y0,x0,1,stop,stop);

(y0,x0,1,up,stop); (y1,x0,1,up,stop);

(y1,x0,1,up,plus); (y1,x1,1,up,plus);

(y1,x2,1,up,plus); (y2,x2,1,up,plus);

(y2,x0,1,up,plus); (y2,x1,1,up,plus);

(y1,x2,1,up,stop); (y2,x2,1,up,stop);

(y2,x0,1,stop,plus); (y2,x1,1,stop,plus);

(y2,x2,1,stop,plus); (y2,x2,1,stop,stop);

(y2,x2,0,stop,stop); (y2,x2,0,stop,minus);

(y2,x1,0,stop,minus); (y2,x0,0,stop,minus);

(y2,x0,0,down,stop); (y1,x0,0,down,stop);

(y0,x0,0,down,stop)}

U= {(y0,x1,-,-,-); (y0,x2,-,-,-)}

E  U= safety requirement

is fulfilled

Symbolic Model Checking

Proof of safety requirements

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

25

Symbolic Model Checking

Efficient implementation

• The size of the state space grows exponentially with the number of state

variables => an efficient implementation is necessary in order to apply model

checking to real, large systems

• Common implementation of symbolic model checking: Use of so-called OBDDs

(Ordered Binary Decision Diagrams)
• Often very compact representation of the so-called characteristic function of those state machines

that occur in practical applications

• Efficient evaluation algorithms

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

26

Symbolic Model Checking

Excursus: OBDDs

• OBDDs are a notation for the description of Boolean functions

• OBDDs are a so-called canonical representation (with a given variable order)

Decision table and decision tree as basis for the generation of an OBDD

0: dashed lines; 1: solid lines

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

27

• Removal of redundant terminal nodes

Symbolic Model Checking

Excursus: OBDDs

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

28

• Removal of identical non-terminal nodes

Symbolic Model Checking

Excursus: OBDDs

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

29

• Removal of redundant tests

Symbolic Model Checking

Excursus: OBDDs

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

30

• Same function, different variable order

Symbolic Model Checking

Excursus: OBDDs

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

31

• Same function, different variable order

• Result: Different OBDD

Symbolic Model Checking

Excursus: OBDDs

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

32

• The variable order may have considerable influence on the size of the OBDDs

• The function a1 b1 + a2 b2 + a3 b3 with two different variable orders

Symbolic Model Checking

Excursus: OBDDs

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

33

Symbolic Model Checking

Representing state machines with OBDDs

• Representation of the characteristic function of the fsm as an OBDD

• Selection of a binary coding for all state variables and, if necessary, events,

e.g.,:

• Duplication of state variables for the description of present and successor (next)

states, e.g. yb, ya (binary coding of the state variable Y in the present state); yb„,

ya„ (binary coding of the state variable Y in the next state)

Y

y0

y1

y2

-

yb ya

0

1

0

0

01

1 1

X

x0

x1

x2

-

xb xa

0

1

0

0

01

1 1

vmov

stop

down

up

-

vb va

0

1

0

0

01

1 1

hmov

stop

minus

plus

-

hb ha

0

1

0

0

01

1 1

part_on_table

no

yes 1

0

p

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

34

Symbolic Model Checking

Coding of state machines with OBDDs

• If the state space is coded as described, the characteristic

function has the value 1 if there exists a transition between two

states under consideration. Otherwise it has the value 0

y0,x0,0

stop
stop

stop
plus

stop
minus

up
stop

up
plus

up
minus

down
stop

down
plus

down
minus

y0,x0,1

y0,x1,0

vmov
hmov

vpos

hpos

part_on_table

start_up

stoplow

Present state Next state (‘)

(y0,x0,0,stop,stop) -> (y0,x0,1,stop,stop) =>

+

(y0,x0,1,stop,stop) -> (y0,x0,1,up,stop) =>

+

...

yb ya xb xa p vb va hb ha yb' ya' xb' xa' p' vb' va' hb' ha'

yb ya xb xa p vb va hb ha yb' ya' xb' xa' p' vb' va' hb' ha'

yb

ya

xb

xa

p

vb

va

hb

ha

yb'

ya'

xb'

xa'

p'

vb'

va'

hb'

ha'

vb

va

hb

ha

yb'

ya'

xb'

xa'

p'

vb'

va'

hb'

ha'

1

OBDD

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

35

Symbolic Model Checking

Analysis of state machines with OBDDs

• Efficient analysis algorithms exist for OBDDs, e.g., the apply-function that

combines two functions f and g given as OBDDs with an operator op to a new

function: f op g

• The apply-function on OBDDs uses the following rule:

The application of the operation on the OBDDs can thus be recursively applied to

the single nodes. If - doing this - a dominant terminal value occurs in one of the

combined OBDDs (e.g., 1 with the OR-operator, 0 with the AND-operator), the

appropriate terminal value can be directly inserted and the recursion stops

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

36

• Example: Checking the safety requirement of the elevating rotary table
• The intersection of the reachable states and the unsafe states has to be empty, i.e.,

• if e is a Boolean function represented as an OBDD, which has the value 1 for all reachable states

E and

• if u is a Boolean function represented as an OBDD, which has the value 1 for all unsafe states U,

• (e AND u) must be reducible to the Boolean constant FALSE

• i.e., the state is either reachable or unsafe, but not reachable and unsafe

Symbolic Model Checking

Analysis of state machines with OBDDs

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

37

• Function u describing the set U of unsafe states
• For unsafe states only position variables are interesting, all other variables can be seen as „don„t

cares“

• Based on the given binary coding the following OBDD is generated:

yb

ya

xa

xb

1

u

0

xb

Symbolic Model Checking

Analysis of state machines with OBDDs

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

38

• Function e describing the set E of reachable states
• Only position variables must be considered; all other variables are regarded as „don„t cares“

• Based on the given binary coding the following tree is generated:

xa

e

xb

1 0

xb

0 0

xb

1 1

xb

1 0

xb

1 1

xb

1 0

xb

0 0

xb

0 0

xa xa xa

ya ya

yb

Symbolic Model Checking

Analysis of state machines with OBDDs

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

39

• The following OBDD describes the set E (reachable states):

xa

e

xb

1 0

xa

ya ya

yb

Symbolic Model Checking

Analysis of state machines with OBDDs

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

40

• The AND-operation:

• There are no reachable states that are unsafe, because the AND-operation
applied to both sets of states produces the Boolean constant FALSE. The
system is safe with regard to the defined safety requirement

xa

e

xb

1 0

xa

ya ya

ybyb

ya

xa

xb

1

u

0

xb

AND

=>

e AND u

0

ybu, ybe

yau, yae

xau, xae

xbu, xbe

=>
0

Symbolic Model Checking

Analysis of state machines with OBDDs

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

41

Symbolic Model Checking

Summary

• Symbolic model checking is a powerful formal technique for proving properties,

which requires a finite state description of the behavior

• In many practical applications, OBDDs are appropriate, efficient descriptions of

state machines

• Symbolic model checking produces either a validation of required properties or a

counter example

• Due to the widespread use of finite state machines in software engineering, the

importance of symbolic model checking is growing

