
Safety and Reliability of Embedded Systems (WS 11/12)

Problem Set 7

Due Thursday, February 2nd, 2012

Problem 1: Symbolic model checking

A brewery runs a simple system that measures the amount of beer to be filled into beerbarrels. The equipment contains a tank, an input valve, an output valve, and the controller. In the initial state the tank is empty (l_{min}) and both valves are closed. Then, the input valve is opened and the beer-level in the tank rises. When it reaches the level l_{fill} , the input valve is closed and the output valve is opened in order to fill the barrel. The beer level in the tank now drops until it is empty (l_{min}) . Finally, the output valve is closed and the cycle starts again.

The system contains a sensor L that measures the beer-level in the tank. Its values are l_{min} , l_{fill} , and l_{max} . The input valve V_{in} and the output valve V_{out} are actuators. The values are *open* and *closed*.

- a) Develop an appropriate finite state machine that defines the behavior of the system described above.
- b) It is required that the system fulfills the following safety requirements:
 - i. It is prohibited that both valves are open at the same time.
 - ii. Level l_{max} does not occur.

Please specify each of the safety requirements in CTL.

c) Determine the set **E** of reachable states.

d) Represent the set **E** as a Boolean function *e* (OBDD). Please use the following binary coding and the variable order $l_0 \rightarrow l_1 \rightarrow v_i \rightarrow v_o$.

L	I ₁	\mathbf{I}_{0}		V_{out}	Vo	V _{in}	Vi
l _{min}	0	0	-	closed	0	closed	0
l _{fill}	0	1		open	1	open	1
I _{max}	1	0		'		·	
-	1	1					

- e) Draw an OBDD-representation of each of the sets of unsafe states \mathbf{U}_i and $\mathbf{U}_{ii}.$
- f) Determine whether the safety requirements are fulfilled.