

software engineering dependability

Safety and Reliability of Embedded Systems

(Sicherheit und Zuverlässigkeit eingebetteter Systeme)

Fault Tree Analysis

Mathematical Background and Algorithms

Content

- Definitions of Terms
- Introduction to Combinatorics
- General Formulas for AND-, OR-, NOT-, XOR-Gates
- Calculation of Top-Event Probability
- Results beyond Top-Event Probability
- Importance Measures
- Other Issues in Quantitative Analysis

Definitions of Terms

- **Failure** is any behavior of a component or system that deviates from the specification
- Fault is an abnormal state or condition within a component that can lead to a failure
- Accident is an undesired event that causes death or injury of persons or harm to goods or to the environment
- Hazard is a state of a system and its environment where the occurrence of an accident depends only on influences that are not controllable by the system
- Risk is the combination of hazard probability and severity of the resulting accident
- Acceptable Risk is a level of risk that authorities or other bodies have defined as acceptable according to acceptance criteria

3

Definitions of Terms

Other definitions exist, but many of them are unpractical

- Safety is freedom from unacceptable risks
 - Safety analysis aims at proving that the actual risk is below the acceptable risk
- Availability is the property of a system to fulfill its purpose at a given point in time
 - The focus is on uninterrupted service
- **Reliability** is the property of an entity to fulfill its reliability requirements during or after a given time span under given application conditions
 - Probability is related to the probability of a failure event over the mission time

Modeling of Reliability

Reliability Function R(t):

- F(t) gives the probability that at time t the (non-repairable) system has failed
- Thus R(t) = 1 F(t) is the probability that at time t no failure has occurred yet

Probability Density f(t):

• The probability density f(t) describes the modification of the probability that a system fails over time:

$$f(t) = \frac{d F(t)}{dt}$$

States have a probability. Events have a probability density and an (occurrence) rate

· Failure Rate:

• The failure rate is the relative boundary value of failed entities at time t in a time interval that approximates zero, referring to the entities still functional at the beginning of the time interval:

$$\lambda(t) = \frac{f(t)}{R(t)} = \frac{dF(t) / dt}{R(t)} = \frac{-dR(t) / dt}{R(t)}$$

Cut Sets, Minimal Cut Sets, Path Sets

- A **Cut Set** is a set of basic events, which in conjunction cause the top event
- A Minimal Cut Set (MCS) is a cut set that no longer is a cut set if any of its basic events is removed
- A Path Set is a set of basic events that, if they are false, inhibit the top event from occurring
- A Minimal Path Set (MPS) is a path set that no longer is a path set if any of its basic events is removed

6

Introduction to Combinatorics: Truth Values

AND: $A \wedge B$ OR: $A \vee B$

Proposition A →	False	True
Proposition B ↓		
False	False	False
	False	True
True	False	True
	True	True

d The propositions are usually of the type "Component X is in a failed state"

1. **The proposition of the type "Component X is in a failed state"

1. **The proposition of the type "Component X is in a failed state"

2. **The proposition of the type "Component X is in a failed state"

3. **The proposition of the type "Component X is in a failed state"

4. **The proposition of the type "Component X is in a failed state"

4. **The proposition of the type "Component X is in a failed state"

4. **The proposition of the type "Component X is in a failed state"

4. **The proposition of the type "Component X is in a failed state"

4. **The proposition of the type "Component X is in a failed state"

4. **The proposition of the type "Component X is in a failed state"

4. **The proposition of the type "Component X is in a failed state"

4. **The proposition of the type "Component X is in th

Introduction to Combinatorics: Probabilities

A is true with probability P1, B with probability P2

Proposition A →	1-P1	P1
Proposition B ↓		
1-P2	(1-P1) * (1-P2)	P1 * (1-P2)
P2	(1–P1) * P2	P1 * P2

AND:
$$P(A \wedge B) = P1 * P2$$

OR:
$$P(A \lor B) = P1 * (1-P2) + (1-P1) * P2 + P1 * P2$$

= 1- [(1-P1)*(1-P2)]
= P1 + P2 - P1*P2

General Formulas for AND / OR with n Inputs, NOT, XOR

• AND-Gate:
$$P_{out} = \prod_{i=1}^{n} P_i$$

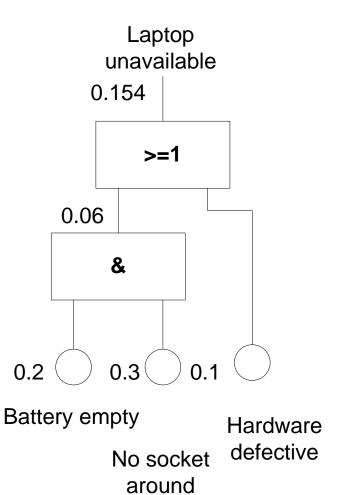
• OR-Gate:
$$P_{out} = 1 - \prod_{i=1}^{n} (1 - P_i)$$

Precondition for these formulas: Stochastically independent events!

- $P_{out} = 1 P_{in}$ (only one input) **NOT-Gate**:
- $P_{out} = \sum_{i=1}^{n} P_{i} \cdot \prod_{\substack{j=1 \ i \neq i}}^{n} (1 P_{j})$ **XOR-Gate**:
 - **d** XOR is normally defined for 2 inputs only
- The **n-out-of-m Voter** can be replaced by a combination of AND / OR gates
- The **Inhibit-Gate** can be replaced by an AND and a NOT gate
- The Priority-AND has no static combinatorial formula

9

Calculation of Top-Event Probability



- Apply gate formulas in a bottom-up fashion
- Stop if top-event is reached

Bottom-up calculation is not efficient for large FTs

There are two practical algorithms...

Calculation Method 1: Minimal Cut Sets

- The top-event is the union of all intersection-free minimal cut sets
- If cut-set probabilities are small (below 0.1), then intersection probabilities are even smaller
- The top-event probability is the sum of all MCS probabilities

$$P_{top} = \sum_{all\ MCS} P_{MCSi}$$

 The probability of each MCS is the product of the probabilities of the included basic events

$$P_{MCS} = \prod_{all \ events \in MCS} P_i$$

This algorithm leads to an approximation. It does not work for NOT gates

Finding Minimal Cut Sets

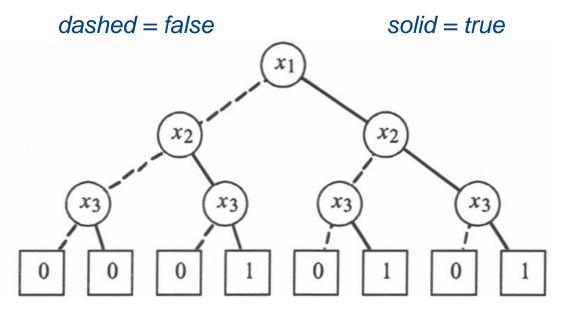
- Decompose the tree recursively
- For each OR gate
 - Generate as many entries as there are inputs {(i1), (i2), (i3)...}
- For each AND gate
 - Generate one entry containing all inputs {(i1, i2, i3,...)}
- Repeat until all gates are resolved
- Cancel cut sets that are not minimal (redundant)

Calculation Method 2: Using BDDs

- **BDD** = Binary Decision Diagram
- **OBDD** = Ordered BDD (defined variable order)
- ROBDD = Reduced Ordered BDD (after elimination of redundancies)
- ROBDDs are an efficient representation of Boolean formulas

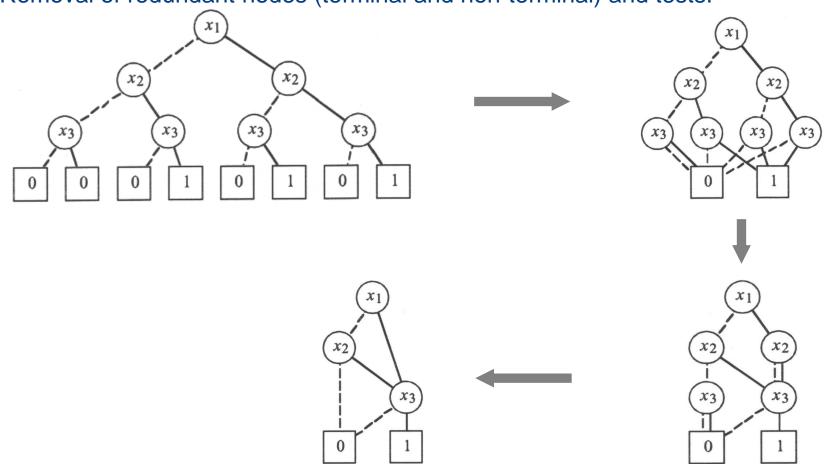
x_1	x_2	<i>x</i> ₃	f
0	0	0	0
0	0	1	
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

$$f = (x1 \lor x2) \land x3$$



BDD Reduction

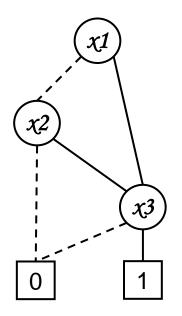
Removal of redundant nodes (terminal and non-terminal) and tests:

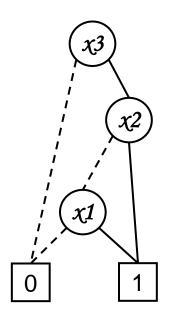


14

Impact of Variable Order

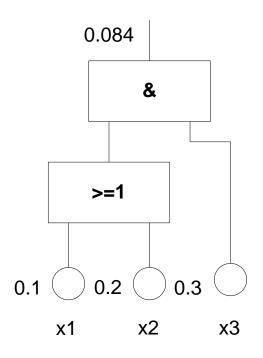
- The variable order may have considerable influence on the size of the OBDDs
- Same function, different variable order:

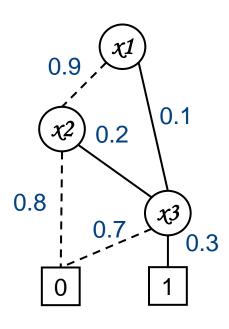




Finding the best variable order is NP-complete (= unachievable for large FTs)

Calculation of Top-Event Probability via BDDs





- Annotate probabilities from FT to true branches
- Annotate 1-P to false branches
- For each path multiply branch probabilities
- Sum up all paths that lead to terminal 1

$$P = 0.1 * 0.3 + 0.9 * 0.2 * 0.3 = 0,084$$

Results beyond Top-Event Probability

- Probability of cut sets with order 1 (consisting of only one event)
 - · Single points of failure should have extremely low probability
- Failure probabilities of (technical) sub-systems
 - Here, redundancy can reduce failure probability of the system
- Equivalent failure rates
 - Specify, which percentage of the intact systems are expected to fail within a given time span

Importance Measures

- Importance measures quantify the significance of FT events in terms of their contribution to the top-event probability
- To know the importance of part of the FT is important for
 - Robustness Estimation: How much will my result change if input values are roughly estimated or change during operation?
 - Work planning: You should rather spend your time on system changes that have significant impact on overall failure probability

Some Importance Measures

- Fussell-Vesely Importance
 - Absolute or relative (= percentage) contribution to the top-event probability
- Risk Reduction Worth or Top Decrease Sensitivity
 - · Decrease of top-event probability if a given event is assured not to occur
- Risk Achievement Worth
 - Increase of top-event probability if a given event occurs
- Binbaum's Importance Measure
 - Rate of change of top-event probability in relation to rate of change of a given event

Other Issues in Quantitative Analysis

- Uncertainty Quantification
 - Event data is taken from samples or from other environment
 - Sensitivity analysis or formal uncertainty analysis (assigning a probability distribution)
- Coverage Factors
 - · Take into account that some failures do not lead to catastrophic results
- Time or Phase Dependent Analysis
 - Use different models or rates for different time intervals according to mission phases

Literature

FTA and Probabilistic Risk Assessment

- Birolini A., Reliability engineering: theory and practice (third ed.), New York, Springer, 1999
- Kececioglu, D.: Reliability Engineering Handbook, Vol. 1 & 2, PTR Prentice Hall, 1991.

Minimal Cut Sets

- Fussel JB, Vesely WE, A new methodology for obtaining cut sets for fault trees, in Trans. American Nuclear Society, 15, 262, 1972
- T. Kohda & EJ Henley, On Digraphs, Fault Trees, and Cut Sets, Reliability Engineering and System Safety, 20 (1), 1988, p. 35-61

BDD Algorithm

- Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computers, C-35(8):677--691, Aug. 1986.
- O. Coudert and J. C. Madre. Fault tree analysis: 10²⁰ prime implicants and beyond. In Proceedings of the Annual Reliability and Maintainability Symposium, pages 240-5, Atlanta, GA, 26-28 January 1993
- A. Rauzy. An Brief Introduction to Binary Decision Diagrams. RAIRO-APII-JESA, 30(8):1033-1051, 1996