
Introduction

Safety and Reliability of Embedded Systems

(Sicherheit und Zuverlässigkeit eingebetteter Systeme)

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

2

• Paradigm-change in the automotive business

• Mariner 1 and Ariane 5

• Therac-25

• Definition of our research topic and focus

• Situation analysis of software development in practice

• Consequences

• Summary of available techniques

Content

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

3

• The majority of microprocessors is installed in technical (embedded) systems

(varying statements on the number, but surely more than 90%)

• Many of these systems are not safety-critical (e.g. cellular phone)

• Others are safety-critical
• Aircrafts

• Trains

• Cars

• Medical equipment

• ...

• Reliability and availability are always important

Motivation

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

4

Motivation

Paradigm-change in the automotive business

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

5

June 4., 1996, Kourou / Fr. Guyana:

Maiden flight of the Ariane 5

...

declare

 vertical_veloc_sensor: float;

 horizontal_veloc_sensor: float;

 vertical_veloc_bias: integer;

 horizontal_veloc_bias: integer;

 ...

begin

 declare

 pragma suppress(numeric_error, horizontal_veloc_bias);

 begin

 sensor_get(vertical_veloc_sensor);

 sensor_get(horizontal_veloc_sensor);

 vertical_veloc_bias := integer(vertical_veloc_sensor);

 horizontal_veloc_bias := integer(horizontal_veloc_sensor);

 ...

 exception

 when numeric_error => calculate_vertical_veloc();

 when others => use_irs1();

 end;

end irs2;

Motivation

Ariane 5

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

6

• Cause
• 37 sec. after engine start (30 sec. after liftoff) Ariane 5 had a horizontal velocity of 32768.0 (internal

units). The integer conversion of the 64-bit floating point variable caused a data overflow. The second
flight controller experienced the same problem 72 msec before and thus was not operational at that
time. Diagnosis data were propagated to the main flight computer. These data were interpreted as
valid flight data. Incorrect steering commands were sent. These caused a mechanical overload and
finally Ariane 501 exploded.

• Effect
• Total financial loss of 850 Million Euro

Motivation

Ariane 5

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

7

• Therac-25 was a linear accelerator released in 1982 for cancer treatment by

emitting limited doses of radiation

• This new model was software-controlled as opposed to hardware-controlled;

previous units had software merely for convenience

• Controlled by a PDP-11 computer; software controlled safety

• In case of error, the software was designed to prevent harmful effects

• However, in case of software error, cryptic codes were given back to the

operator: “MALFUNCTION xx”, where 1 < xx < 64

• Operators were rendered insensitive to the errors; they happened often, and

they were told it was impossible to overdose a patient

• However, from 1985-1987, six people received massive overdoses of

radiation; at least three of them died

Motivation

Therac-25

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

8

• Main cause
• Race condition often happened when operator entered data quickly, then hit the UP arrow key

to correct, and values weren’t reset properly

• AECL (the company) never noticed quick data-entry – their people didn’t do this on a daily basis

• Apparently the problem existed in previous units, but they had a hardware interlock mechanism

to prevent it; here, they trusted the software and took out the hardware interlock

Motivation

Therac-25

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

9

• Overconfidence in software, especially for embedded systems

• Reliability is not equal to safety

• No defensive design, bizarre error messages

• They just “bugfixed”, and didn’t look for root causes

• Improper software engineering practices
• Most testing, in reality, was done in a simulated environment and a complete unit; little if any unit

and software testing

• They claimed 2700 hours of testing; it was really 2700 hours “of use”

• Overly complex, poorly organized design

• Blind software reuse

Motivation

Lessons from Therac-25

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

10

• It is difficult to develop large, complex software and to guarantee that this
software does not cause problems during operation

• If problems occur, these may cause catastrophic effects in technical application
domains

Our research topic:

Software Engineering for Technical Applications

Focus:

Quality Management and Quality Assurance, i.e.,

Safety, Reliability, Availability and Real-Time Behavior

of Critical Software-Based Systems

(e.g. Transportation, Medical Systems, Industrial Automation)

Motivation

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

11

• Question: Who ensures that system development is perfectly done?

• Answer: Nobody!

• Consequence: The development is not complete with the implementation.

Quality assurance is needed.

• Typical approaches
• Ensure that the development processes are suitable

 => Quality management

• Ensure that the development steps provided the desired results

 => Quality assurance (can also be done more or less formally and in a quantified or non-

quantified manner)

Situation Analysis of Software Development

in Practice

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

12

• According to M. Cusumano the defect rate of software shows the following trend

(defects in 1000 lines of source code)
• 1977: on average 7- 20 defects

• 1994: on average 0,2 - 0,05 defects

• In 13 years the defect rate could be lowered about 100 fold (but the size of software products

increased)

Situation Analysis of Software Development

in Practice

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

13

According to data from:

Jones C., Applied software

measurement, New York:

McGraw-Hill 1991

Coding

Modeling and

Documentation

Management

0

50

100

0
,9

1
,5

1
,6

4
,4

8
,1

2
0

5
5

1
4
9

4
0
5

1
0
9
9

2
9
9
4

8
1
9
2

3
0
1
1
8

8
1
9
2
0

Development Effort (MM)

%

12

33

18 11
5

68

Quality Assurance 37

16

Motivation Situation Analysis of Software Development

in Practice - Increasing Importance of Quality Assurance

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

14

• Software (and systems) quality has to be assured
• Evaluation, validation and improvement of development processes

• Accompanying quality assurance during the early development phases

• Testing of the implemented software (the code)

• The software is large => several test phases are required

Consequences

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

15

• Highly varying demands on software (experimental prototype up to engine

control of a commercial aircraft) => need of different methods between „trial"

and „proof"

• It is not possible to guarantee that code is fault-free => it is required to

determine the residual risks => quantitative analysis methods

Consequences

Safety and Reliability of Embedded Systems

© Prof. Dr. Liggesmeyer

16

• Modeling techniques
• FMEA, FMECA: Identification of critical functions, blocks, modules, …; no real quantified results

• Reliability block diagrams: Quantified results on reliability; not really applicable to software

• Fault trees: Formal technique based on boolean logic and statistics; quantified results

• Markov analysis and stochastic Petri nets: Formal technique (augmented state machines),

quantified results

• Analytical techniques
• Simulation, testing: Incomplete, no dependable results

• Stochastic analysis: Commonly used for hardware, no widespread use for software

• Formal verification: Complete (for certain fault-classes), but complicated

Available techniques

