

software engineering dependability

Safety and Reliability of Embedded Systems

(Sicherheit und Zuverlässigkeit eingebetteter Systeme)

FMECA (Failure Modes, Effects and Criticality Analysis)

Content

- Definition
- Accomplishment
- Literature

FMECA Definition

- Failure Modes, Effects and Criticality Analysis (FMECA) is a preventive method for the identification of problems, their risks and effects (DIN 25448, IEC 812)
- FMECA has the following goals:
 - · Detection of hazards and problems
 - Identification of potential risks
 - Quantification of risks
 - Determination of corrective measures
- FMECA can be performed as component FMECA (e.g. for a hardware module), as system FMECA (e.g. for a medical device) or as process FMECA (e.g. for a system development process)

FMECA Accomplishment

- FMECA is done in the following steps
 - Fault analysis: Collection of possible faults including available information about the type, causes and consequences
 - Risk evaluation with the aid of the risk priority number (RPN)

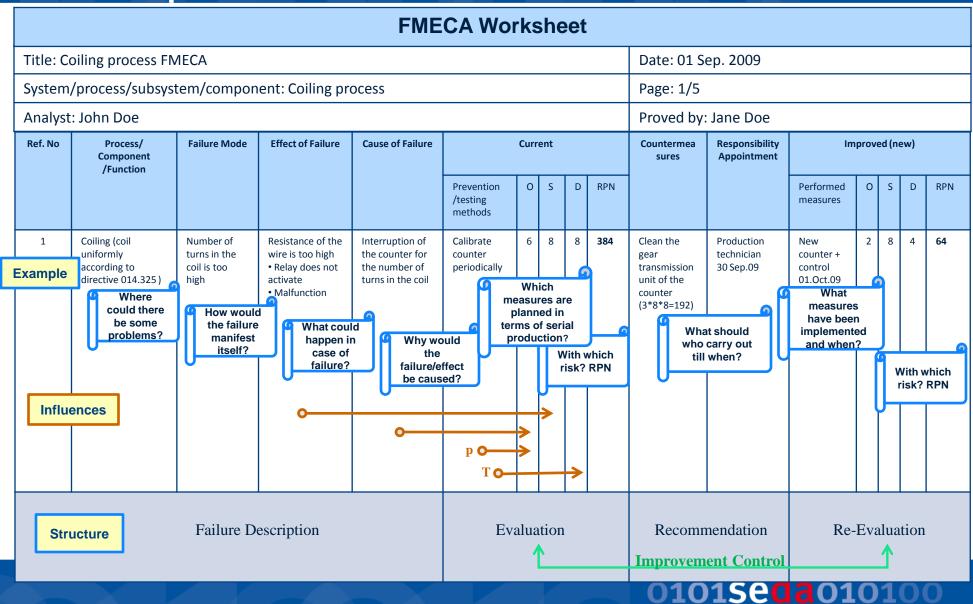
RPN = occurrence probability * severity of consequences * probability of non-detection

- If for the three influencing factors a value between 1 and 10 is used (1= no risk, minor occurrence; 10 = high risk, high occurrence), the RPN is a value between 1 and 1000
- The risk priority number generates a ranking for the causes of faults
- Causes of faults with a high risk priority number are to be handled with priority

FMECA Accomplishment

Formulate proposed actions

- Gear proposed solutions towards fault prevention
- High occurrence probabilities of faults: An improvement is definitely necessary (also in the case of low severity and high detection probability)
- High severity: In this case corrective measures are also required because of the consequences
- High non-detection probability: Improvement of detection probability by suitable analytical instruments
- Decide for actions
- Analyze residual risk (recalculate RPN)
- Conduct cost-benefit analysis
- Comparison of RPN before and after the improvement
- Relate obtained improvement to invested effort


FMECA Accomplishment

Evaluation	Severity (S)	Probability of Occurrence (O)	Probability of Non-Detection (D)	
	Description	Description	Description	Probability
10	Hazard, violation of laws	Failures almost certain; Numerous faults are known with the same or similar constructions	No detection procedures known or planned	< 90%
9	Hazard, violation of laws possible	Very large number of failures is likely	Detection possible but uncertain	90%
8	Total loss of function, customer very angry	Large number of failures is likely	Very low probability	
7	Functions severely limited, customer angry	Moderately large number of failures is likely	Low probability of detection	98%
6	Failure of individual main functions, customer quite angry	Moderate number of failures is likely	Almost moderate probability of detection	
5	Moderate usage restriction, customer a bit angry	Occasional failures are likely	Moderate probability of detection	
4	Slight usage restriction, customer displeased	Probably few failures	Moderately high probability of detection	99.7%
3	Minor usage restriction, customer slightly displeased	Probably very few failures	High probability of detection	
2	Very low impact, customer barely affected	Failures rare	Very high probability of detection	99,9%
1	Customer does not notice impact	Failures unlikely, similar constructions without failures so far	Almost certain detection	99.99%

FMECA Accomplishment

FMECA Literature

- DIN 25448, Ausfalleffektanalyse (Fehler-Möglichkeits- und -Einfluß-Analyse), Berlin: Beuth Verlag, Mai 1990
- IEC 812, Analysis Techniques for System Reliability Procedure for Failure Mode and Effect Analysis (FMEA), International Electrotechnical Commission, 1985
- Liggesmeyer, Qualitätssicherung softwareintensiver technischer Systeme, Heidelberg: Spektrum-Verlag, 2000
- Mäckel O., Software-FMEA: Chancen und Nutzen der FMEA im Entwicklungsprozess, QZ Qualität und Zuverlässigkeit, Januar 2001, pp. 65 – 68

8